
Version: 2.0

LEGO® MINDSTORMS® NXT Executable File Specification
LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS logo are trademarks of the LEGO Group
LabVIEW, National Instruments, NI, and ni.com are trademarks of National Instruments.
©2006-2009 The LEGO Group
Other product and company names listed are trademarks or trade names of their respective companies.

LEGO® MINDSTORMS® NXT
Executable File Specification

TASK
This document describes the executable file
format and bytecode instructions used by the
virtual machine in the LEGO® MINDSTORMS®
NXT Intelligent Brick.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 2

Version: 2.0

Table of Contents
Introduction ... 3

Assumptions and Conventions ... 3
MINDSTORMS NXT and LabVIEW ... 4

NXT Program Components and Execution .. 4
Bytecode Instructions ... 5
Bytecode Scheduling and Parallelism .. 6
Run-time Data .. 7

Polymorphic Instructions and Data Type Compatibility .. 10
Data Type Conversion .. 11
Polymorphic Comparisons ... 11

Executable File Format ... 13
Overview ... 13
File Header ... 14

Dataspace Header .. 15
Dataspace ... 16

Dataspace Table of Contents ... 16
Default Values for Static Data .. 21
Default Values for Dynamic Data ... 22

Clump Records ... 24
Codespace .. 25

Long Instruction Encoding .. 25
Short Instruction Encoding ... 26
Argument Formats .. 27
Clump Termination ... 28

Example Program: Adding Scalar Numbers ... 29
Example Code .. 29

Header Segment .. 29
Dataspace Segment ... 30
Clump Record Segment ... 31
Codespace Segment .. 31

Instruction Reference .. 33
Math Instructions .. 33
Logic Instructions .. 35
Comparison Instructions ... 36
Data Manipulation Instructions ... 37
Control Flow Instructions .. 41
System I/O Instructions ... 43
Instruction Reference Appendix .. 45

Input Port Configuration Properties .. 45
Output Port Configuration Properties ... 49
System Call Methods.. 57
Reserved Opcodes ... 80

Glossary .. 81

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 3

Version: 2.0

INTRODUCTION

This document provides information about the binary file format of executable programs compiled by
LEGO® MINDSTORMS® NXT Software 2.0 for NXT intelligent bricks running firmware 1.28. This
document also describes how the firmware virtual machine (VM) uses these program files at run-time.

You might find this document useful for any of the following reasons:

 You are developing a compiler for NXT firmware 1.28 or compatible.
 You are developing an alternative firmware which reuses all or part of NXT firmware 1.28.
 You are developing bytecode programs and want to examine the compiled code.

The document includes an Introduction to important concepts/terminology, a specification of the binary
File Format, an Example Program, a full Instruction Reference, and a Glossary.

Assumptions and Conventions

This document assumes that you are familiar with basic programming concepts, including memory
addressing, subroutines, data types, hexadecimal numbers, and little-endian vs. big-endian byte order.

This document assumes use of a compiler to produce NXT executable files. The binary file format is not
designed to be hand-coded and there is currently no human-readable text format defined. Usage of a
hex editor is recommended for examining file contents.

This document does not assume you are familiar with NXT-G, which is the graphical programming
language used in LEGO MINDSTORMS NXT Software 2.0. However, an understanding of NXT-G might
help with some of the concepts this document uses.. Many of the run-time semantics of this system were
designed to express NXT-G block diagrams as directly as possible.

The NXT firmware 1.28 is implemented in ANSI C, so some behaviors are inherited from C. For example,
the firmware stores text strings as null-terminated byte arrays, and integer conversion follows ANSI C
rules.

Some knowledge of the NXT brick hardware architecture might help you as you use this document. In
particular, the NXT brick uses the ARM7TDMI® core as the main CPU. The NXT brick also has flash
memory and integrated RAM within a shared address space. Program files are stored in the flash
memory, but while a program executes, the NXT brick keeps volatile run-time data in RAM that is much
faster than the flash memory. Refer to the LEGO MINDSTORMS NXT hardware development kit for
more information about the NXT hardware.

Unless otherwise noted, this document uses the following conventions:

 All offsets and/or array indexes are zero-based numbers.
 Multi-byte data fields are often referred to as words or longs. Words consist of 16 bits, whereas

longs consist of 32 bits.
 All multi-byte fields are listed in little-endian byte order, because this is how NXT executable files

store these fields.
 All individual bits are identified from left to right, starting with bit 0 on the left. That is, bit 0 is the

most significant bit of the least significant byte.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 4

Version: 2.0

This document uses the following typographical conventions:

 Instructions, arguments, IDs, opcodes, parameters, properties, methods, values, and so on are in
monospace font.

 New terms and Boolean values TRUE and FALSE are in italic font.
 Cross-references to other sections of this document are in bold font.

MINDSTORMS NXT and LabVIEW

LEGO MINDSTORMS NXT Software 2.0 is based on National Instruments LabVIEW™ 7.1, so the
program run-time components of the firmware mimic many of the semantics and behaviors of LabVIEW.

NXT Program Components and Execution

The MINDSTORMS NXT brick uses firmware that shares some architectural similarities with the earlier
generation of MINDSTORMS, also known as the RCX brick. The NXT firmware consists of several
modules, including those for sensors, motors, and a virtual machine (VM).

However, the MINDSTORMS NXT brick executes programs differently from the RCX. Whereas the RCX
brick uses program slots, the MINDSTORMS NXT brick stores user-accessible programs as named
executable files, similar to how a PC stores files. These files use the .RXE naming convention and
contain all information necessary to run the program. In other words, one .RXE file represents one
program.

You can break the program structure down into three high-level logical components: bytecode
instructions, bytecode scheduling information, and run-time data. The .RXE files contain the information
that represents these logical components.

When the VM runs a program, it reads the encoded .RXE file format from flash memory and initializes a
32KB pool of RAM reserved for use by user programs. The .RXE file specifies the layout and default
content of this pool. After the RAM pool is initialized, the program is considered active, or ready to run.
Most program functionality involves modifying this pool of RAM and performing I/O actions based on the
values stored in RAM. Refer to the Program Execution Overview section of this document for more
information about how the VM runs programs.

The following figure shows a logical view of how the three main program components are divided into
sub-components and how these sub-components are arranged while a program is active.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 5

Version: 2.0

In the previous figure, notice that the run-time data and scheduling components contain sub-components
both in flash and RAM. This organization signifies that some of these sub-components are volatile at run-
time, but others remain constant. Non-volatile sub-components remain in the file, which the VM can refer
to at any time during program execution. The codespace is an example of a non-volatile sub-component.
The bytecodes never change at run-time, so these bytecodes remain entirely in flash memory.

The following sections provide more information about these concepts.

Bytecode Instructions

The bytecode instructions constitute the main portion of a program. The VM interprets instructions to act
on data in RAM and access the I/O systems of the NXT brick. For example, the OP_ADD instruction adds
two values from RAM and stores the result back into RAM. The OP_MOV instruction copies data from one
location in RAM to another.

The NXT supports the following six classes of bytecode instructions:

 Math—Includes basic math operations, such as OP_ADD.
 Logic—Includes Boolean logic operations, such as OP_AND.
 Comparison—Includes instructions for comparing values in RAM and producing Boolean outputs.
 Data Manipulation—Includes instructions for copying, converting, and manipulating data in RAM.
 Control Flow—Includes instructions for branching execution within clumps, scheduling clumps,

calling subroutine clumps, and managing mutexes for parallel execution. Refer to the Bytecode
Scheduling section of this document for information about clumps.

 System I/O—Includes instructions for interfacing with the built-in I/O devices and other system
services of the NXT brick.

Refer to the Instruction Reference section of this document for information about each individual
instruction.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 6

Version: 2.0

Bytecode Scheduling and Parallelism

The program’s bytecode instructions are organized into one or more batches of code. These code
batches are called clumps and are used as subroutines for multi-tasking. Each clump consists of one or
more bytecode instruction.

The VM decides how to schedule the various interdependent clumps at run-time. This decision is based
on bytecode scheduling information. Programs contain one clump record for each clump of bytecode
instructions. A clump record specifies which bytecodes belong to a given clump, the run-time execution
state of the clump, and any dependent clumps that should execute after the current clump finishes.

A clump is said to be dependent on others when that clump requires data computed by one or more other
clumps before executing. A dependent clump can execute only after all of its data dependencies are
fulfilled. The VM uses clump records to track these data dependencies and schedules dependent clumps
only when all upstream clumps have finished execution.

You also can call clumps directly from other clumps. The called clump is a subroutine. In this case, the
caller clump temporarily suspends execution while the subroutine runs. You can share one subroutine
between multiple caller clumps. However, each caller clump must acquire a mutex to call a shared
subroutine safely. Subroutines might consist of as many dependent clumps as can fit in the program.
Subroutines might call other subroutines, but a subroutine cannot call itself.

The VM is also capable of cooperative multi-tasking between clumps. The VM gives a portion of the CPU
to any clumps deemed ready to run. Note that all clumps have equal access to data in RAM and other
system resources, such as the display and motors. The language semantics of NXT-G help to prevent
resource contention, but the VM does not impose any restrictions at run-time. You must ensure that
parallel clumps do not interfere with each other.

Program Execution Overview

When the user runs a program, the VM executes the following four phases:

1. Validation—Reads the file and validates the version and other header contents.
2. Activation—Allocates and initializes run-time data structures in RAM. After a program has been

activated, all run-time data , such as clump records, dataspace, and system bookkeeping data, is
ready such that the bytecode instructions in clumps can run and operate on user data.

3. Execution—Interprets the bytecode instructions in the file, using the code scheduling information
to decide order of clump execution. Execution continues until all clumps finish executing or the
user aborts the program.

4. Deactivation—Re-initializes all I/O systems and data structures in RAM, and releases access to
the program file.

Note that even at run-time, the VM never loads the bytecode instructions themselves into RAM. Instead,
the VM executes these instructions directly out of the .RXE file, which resides in the flash memory
address space of the NXT brick. This methodology allows a relatively small pool of RAM to be used only
for volatile program data. The bytecode instructions never change during program execution.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 7

Version: 2.0

Run-time Data

At run-time, the VM uses a reserved pool of RAM to store all data the program uses. This pool of RAM
contains a segment reserved for user data; this segment is the dataspace. The dataspace is arranged as
a collection of typed items. Each item has an entry in the dataspace table of contents (DSTOC), which
keeps track of the data types and arrangement of all dataspace items in RAM. Instruction arguments
refer to dataspace items via indexes in the DSTOC. These indexes are dataspace item IDs, which the
instruction interpreter uses to find and operate on the data. Like the bytecode instructions, the DSTOC
remains in flash memory while the program runs and cannot change at run-time.

Data Types

The NXT firmware 1.28 supports the following data types:

 Integers—Signed or unsigned scalar numbers. The NXT firmware 1.28 supports 8-, 16-, and
32-bit lengths. These bit lengths are scalar bytes, words, and longs, respectively.

 Floating-point numbers— Single-precision, 32-bit floating-point numbers.
 Arrays—A list of zero or more elements of any single sub-type. For example, you could use an

array of unsigned bytes to express a list of port numbers for controlling motors. The program can
resize arrays at run-time, which means that zero-length arrays are a valid concept. For example,
you can use zero-length arrays to hold a spot in the DSTOC for data which the program might
produce later.

 Clusters—A collection of typed fields, which are analogous to structures in C. Bytecode
instructions can refer to whole clusters or any field contained in a cluster. Because clusters are
ordered data structures, you must refer to sub-types, or fields, in the order in which the cluster
defines these fields.

 Mutex records—32-bit data structures used for managing safe access to resources by parallel
clumps.

Arrays and clusters are referred to as aggregate types. That is, these types are aggregates of one or
more sub-types. Aggregates are a powerful way to organize data. Some bytecode instructions operate
on aggregates as self-contained units, whereas others operate on individual elements. Furthermore, you
can define nested aggregate data types, such as arrays of arrays, arrays of clusters, and clusters
containing arrays.

Boolean true/false values are stored as unsigned bytes. FALSE is defined as 0, and TRUE is defined as
all other values.

ASCII text strings are a special kind of array. A text string is defined as an array of unsigned bytes with
one extra byte added to the end. This extra byte implements C-style null-termination, which specifies that
the last byte of a string must always equal zero. The NXT firmware supports this style to maintain
compatibility with other code.

The NXT firmware stores mutex records as flat 32-bit data structures. However, mutex records
are not treated as normal scalar values, and you cannot store mutex records in arrays or clusters.
The only two instructions that can operate legally on mutex records are OP_ACQUIRE and
OP_RELEASE. Refer to the Instruction Reference section of this document for information about
these functions.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 8

Version: 2.0

Static Data vs. Dynamic Data

Recall from the Run-time Data section of this document that the DSTOC specifies the dataspace layout
in RAM. Also recall that the DSTOC does not change at run-time. This design means that all data types,
including the initial sizes of any arrays, are fully specified at compile time. As the program activates, the
VM initializes all user-defined data items to their default values, which are the values defined in the .RXE
file. The program can then modify the data item values at run-time.

This user data is divided into two categories: static and dynamic. In the context of the NXT program
dataspace, static dataspace items are items that the VM does not move or resize at run-time. All run-time
data is static, except for data in arrays, which are dynamic. At run-time, the VM can resize or move
arrays within RAM due to any side effects of bytecode operations or other internal factors. The VM
handles this dynamic data management automatically, which means you do not have to specify array
placement in memory. However, this management is subject to the RAM limitations of the NXT brick. If a
program’s array data grows beyond the maximum dataspace during program execution, the program
aborts and the NXT brick displays a File Error message on the screen. Refer to the Dynamic Data
Management section of this document for more information about how the VM handles dynamic data at
run-time.

Static and dynamic data are stored in two separate sub-pools within the dataspace memory pool. The
static dataspace sub-pool is always stored at a lower memory address than the dynamic dataspace.
These two dataspaces never overlap.

This division separates the roles of the program compiler and the run-time execution system of the NXT
brick. The compiler is responsible for specifying the data types and initial RAM locations, or offsets, of all
dataspace items. The run-time execution system is responsible for managing the RAM locations of all
dynamic dataspace items while the program runs.

Regardless of the category of a particular data item, the compiler and execution system combine to
preserve proper address alignment. For example, the compiler is responsible for ensuring that 4-byte
integers are always stored at addresses that are even multiples of 4, while the run-time system is
responsible for ensuring that the start of array data is always aligned to 4-byte boundaries.

Recall from the Run-time Data section of this document that bytecode instruction arguments refer to
dataspace items via indexes in the DSTOC, or dataspace item IDs. In the case of static dataspace items,
resolving a DSTOC index to the actual RAM address of the data is involves reading an offset relative to
the beginning of all user data. This resolution process can be stated as the following equation:

item address = dataspace start + DSTOC[dataspace item ID].offset

Dynamic Data Management

Dynamic data, or array, storage is specified and managed differently from static data. The compiler is
responsible for specifying the DSTOC entries and default values for all dynamic data. The compiler
accomplishes this task by encoding this data in the executable file. When the program activates, the NXT
firmware uses a memory manager to handle the dynamic data.

The memory manager uses an allocation scheme to track and resize arrays inside the dynamic memory
pool. After static data items have been placed in memory, the VM reserves the remaining space in the
VM’s 32KB memory pool for dynamic data. User data arrays are then given initial placements inside the
dynamic data pool. After activation and during execution, the program can resize or move any array at
any time. The memory manager automatically handles all run-time sizing and placement by using a set
of bookkeeping data structures called dope vectors.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 9

Version: 2.0

Dope Vectors

A dope vector (DV) is a data structure which describes an array in RAM. Each array in the dynamic
dataspace has an associated dope vector. DVs are not arrays, but fixed-size records consisting of five
fields. The following table describes these fields.

Field Description
Offset Offset to the start of this array’s data in RAM relative

to the beginning of all user data.
Element Size The size, in bytes, of each array element.
Element Count The number of elements currently contained in this

array.
Back Pointer An unused placeholder in NXT firmware 1.28.
Link Index The index of the next DV in the memory manager’s

linked list.

Because the size and position of arrays can change as the program executes, the DV associated with
each array must also be able to change. Therefore, the set of DVs is stored in a special
dynamically-sized dope vector array (DVA). The DVA is stored in the same memory pool as user arrays.
However, the DVA has the following special properties:

 The DVA is a singleton object, which means the memory can contain one and only one DVA at a
given time. This DVA contains information about all DVs in memory.

 The first entry in the DVA, at index 0, is a DV that describes the DVA itself.
 Because the DVA is used solely for internal memory management, program bytecode instructions

never refer to or modify the DVA.
 The memory manager treats the DVA as a linked-list by using the Link Index field of each DV.

Maintaining this linked-list gives the memory manager a way to quickly traverse the DVA in
ascending order according to the Offset fields in each DV. This design provides efficient
allocation and compaction of dynamic data at run-time.

This memory management system provides a way to resolve the RAM address of any given array starting
only with an index into the DSTOC. Remember that bytecode instructions use these indexes to refer to
user data and that bytecode instructions do not change at run-time, even if these instructions refer to
dynamic arrays.

To resolve the address of an array dataspace item, the VM indexes the DSTOC to find a secondary
index, called the DV index. The VM them uses the DV index to find the true data offset in the DVA. The
following two steps describe this process.

DV index address = dataspace start + DSTOC[dataspace item ID].offset
item address = dataspace start + DVA[DV index].offset

In these steps, the DV index value is a scalar value stored in the static dataspace, which means the
address of the DV index is calculated the same way as any other static value. Refer to the Static Data
vs. Dynamic Data section of this document for information about how static values are calculated.
Because the DV index is static, and because programs cannot modify the DSTOC offset at run-time, the
DV index cannot change at run-time.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 10

Version: 2.0

Nested Arrays

Nested arrays are arrays in which each element is another array. You can think of nested arrays as
having two components: top-level arrays and sub-arrays. The top-level array is the “container” array. A
sub-array is an array contained by the top-level array. Nested arrays are subject to the following three
rules:

1. Programs cannot create or delete top-level arrays.
2. Programs can resize top-level arrays.
3. Programs can create or delete sub-arrays according to how the top-level arrays are resized

during program execution.

Because of these rules, the DV indexes of top-level arrays reside in the static dataspace, but the DV
indexes of sub-arrays reside in the dynamic dataspace.

In practice, bytecode instruction arguments never refer directly to sub-arrays. Instead, the code refers to
top-level arrays, and the bytecode interpreter automatically finds the correct sub-array data. You can
access a specific sub-array only by using the OP_INDEX instruction to copy the sub-array to/from a top-
level array. Refer to the Data Manipulation Instructions section of this document for information about
this and other instructions you use to manipulate arrays.

Polymorphic Instructions and Data Type Compatibility

Most bytecode instructions accept more than one combination of input data types and produce a valid
output based on the input data types. For example, you can use the OP_ADD instruction to produce a
scalar number by adding two scalar numbers. However, you also can use this instruction to add two
arrays or all scalar elements of two arrays. The OP_ADD instruction, like most instructions, is
polymorphic, which means this function adapts to the data types of the inputs you provide. Most
instructions are polymorphic with respect to data type.

Bytecode instructions have requirements with respect to the compatibility of the input data types. Two
data types are compatible if and only if conversion between the two data types is trivial. If an instruction
has only two inputs, those input data types must be compatible. For example, most of the Math, Logic,
and Comparison functions have only two inputs, so these functions operate only on compatible data
types. Other functions handle compatibility as noted in the Instruction Reference section of this
document.

Data type compatibility relies on the following three rules:

1. Any simple scalar data type is compatible with any other simple scalar data type. Bytes, words,
and longs are all compatible with each other.

2. Arrays are compatible if the sub-type, or data type of each element, is compatible.
3. Clusters are compatible if both of the following rules are true:

a. Each cluster contains the same number of sub-elements.
b. Each corresponding pair of sub-elements (examined in order) is compatible.

You can determine compatibility of nested data types recursively applying these rules to each level of
nesting. Apply the relevant rule to each level of nesting until you reach scalar elements.

Note: Mutex records are not compatible with any other data types and cannot be used
with any polymorphic instructions. For example, you cannot add mutex records together.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 11

Version: 2.0

Most Math and Logic instructions accept two compatible inputs and store the output in a dataspace item
with a compatible data type. Output data types must obey the following three rules:

1. If both inputs are scalar, the output must also be scalar.
2. If either input is an array, the output must be a compatible array. The output array will be

automatically sized to match the shortest input.
3. If either input is a cluster, the output must be a compatible cluster.

Similar to the general rules for data type compatibility, you can apply these rules recursively for nested
data types. For example, if either input is an array of clusters, the output must be a compatible array of
clusters.

Data Type Conversion

Remember that scalars of differing sizes (e.g., 16-bit vs. 32-bit) are always compatible, so it is legal to
have size mismatches between inputs and outputs. The firmware automatically converts data types as
necessary. The compiler typically chooses output data types that match the largest input. This choice
minimizes the potential for lost data during conversion. For example, if you add an 16-bit integer to a
32-bit integer, the output is a 32-bit integer.

Polymorphic instructions internally convert scalar data types as needed. To do so, the VM performs the
following three steps on each scalar element being processed.

1. Convert scalars up to 32-bit integers.
2. Perform instruction operation at 32-bit precision, that is, add two 32-bit integers to produce a

32-bit intermediate result.
3. Convert output as needed.

When aggregate types are involved in conversation, the VM applies these three steps to each scalar
element individually. For example, consider the operation of adding two arrays together and storing the
result in a destination array. Each element of the destination array contains the result of invoking the
instruction on a corresponding pair of elements from the source data. The result is similar to writing a “for
each” style loop in a programming language like C. In NXT bytecode, you can express such loops as a
single instruction.

The easiest way to convert numbers (e.g., from unsigned bytes to signed bytes) is to use the OP_MOV
instruction to copy from one dataspace item to another. At the scalar level, data type conversions behave
identically to type casts in ANSI C.

Many instructions automatically resize output arrays. In cases where Math or Logic instructions operate
on arrays of differing sizes, the instruction sets the output array to the same size as the shortest input
array. Any remaining data in the longer input is ignored. Other classes of instructions employ
instruction-specific semantics for output sizing.

Polymorphic Comparisons

Comparison instructions represent a special case of polymorphism: these instructions are polymorphic on
output data types as well as input data types. Thinking of the behavior of instructions as dependent on
their outputs may seem counter-intuitive, but remember that all data types must be fully determined at
compile time, including output data types. This means that the VM can examine output data types at
run-time and act accordingly.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 12

Version: 2.0

For example, users might be interested in two distinct interpretations of the concept of array equality.
Testing the equality of two numerical arrays using the comparison instruction OP_CMP may be stated as
one of two questions:

1. “Are the arrays exactly equal in size, and is every corresponding pair of elements equal?” The
answer to this question is expressed as a single TRUE or FALSE Boolean value. This scenario
is called aggregate comparison because the instruction compares aggregate data types as
complete units to produce a single TRUE/FALSE output.

2. “Which pairs of elements between the two arrays are equal?” The answer to this question is
expressed as an array of Boolean values, where one TRUE/FALSE result applies to each pair
of array elements. This scenario is called element comparison because the instruction
compares elements of aggregate data types are compared individually to produce a
TRUE/FALSE output for each pair.

The concepts of aggregate and element comparisons apply to clusters as well as arrays. Aggregate
comparisons always produce a single Boolean output, whereas element comparisons produce an array or
cluster of Boolean values, where one Boolean value corresponds to each pair of elements compared.

You also can compare scalars to aggregates. Similar to comparisons between aggregates, the data type
of the output of this comparison can be either scalar or aggregate. If the output data type is scalar, all
elements of the aggregate input are compared to the scalar input to produce a single TRUE/FALSE
result, e.g., an aggregate comparison. If the output data type is aggregate, a separate TRUE/FALSE
result is produced for each element of the aggregate input e.g., an element comparison.

To summarize, comparison instructions obey these three rules:

1. If both inputs are scalar, the output must be single Boolean value.
2. If either input is an array, the output may be a single Boolean value (aggregate comparison) or an

array of Boolean values (element comparison).
3. If either input is a cluster, the output may be a single Boolean value (aggregate comparison) or a

cluster of Boolean values (element comparison).

Similar to the general rules for data type compatibility, you can apply these rules recursively for nested
data types. For example, if either input is an array of clusters, the output may be a single Boolean value
or an array of clusters of Boolean values.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 13

Version: 2.0

EXECUTABLE FILE FORMAT

This section specifies the binary file format of executable .RXE files for the NXT firmware 1.28. Unless
otherwise noted, all tables list file contents in the order and format in which they appear in .RXE files.

Overview

.RXE files are divided into four main segments, as described in the following table.

Segment Byte Count Description
File Header 38 Specifies the file contents.
Dataspace Variable Describes data types and default values of each piece

of data owned by the program.
Clump

Records
Variable Describes how clumps should be scheduled at run-

time.
Codespace Variable Contains all bytecode instructions in a flattened stream.

All segments are 16-bit aligned, which means these segments must begin on even byte offsets relative to
the beginning of the file. Since the three variably-sized segments might contain an odd number of bytes,
padding bytes might come between the end of these segments and the beginning of the next segment.
These padding bytes are ignored at run-time. This alignment is required because the VM needs to
quickly access some 16-bit fields in the file at run-time, but the ARM7 microcontroller used in the NXT
brick cannot directly access mis-aligned data. Because the NXT brick natively uses little-endian byte
order, all multi-byte fields throughout the .RXE file are stored in little-endian byte order.

The following sections provide information about each of these segments.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 14

Version: 2.0

File Header

All .RXE files contain a 38-byte file header that describes the layout of the rest of the file. The header
segment contains four separate fields. The following table describes these fields.

Byte Count Field Description

16 Format String Format string and version number.

For NXT firmware 1.28, this string must contain the literal string
‘MindstormsNXT’, followed by a null padding byte, then
0x0005, which is the supported file version number in big-endian
byte order.

In other words, all .RXE files supported by NXT firmware 1.28 start
with these exact 16 bytes (hexadecimal):
4D 69 6E 64 73 74 6F 72 6D 73 4E 58 54 00 00 05

18 Dataspace
Header

Header sub-segment that describes the size and arrangement of
static and dynamic dataspace information in the file.

The section following this table provides more information about
the Dataspace Header.

2 Clump Count Unsigned 16-bit word that specifies the number of clumps in this
file.

NXT firmware 1.28 limits maximum number of clumps per program
to 255. The most significant byte is padding in this header.

2 Code Word
Count

Unsigned 16-bit word that specifies the number of all bytecode
instruction words in this file.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 15

Version: 2.0

Dataspace Header

The Dataspace Header is a sub-segment of the File Header that describes the count, size, and
arrangement of the program’s dataspace items. This header always begins at byte offset 16, relative to
the file’s start, and consists of nine unsigned 16-bit words. The following table describes these fields in
the order in which they appear in .RXE files:

Field Description
Count Number of records in the DSTOC.

The NXT firmware 1.28 limits the number of DSTOC records to 16.383.
Refer to the Dataspace Item IDs section in this document for more
information on this limitation.

Initial Size Initial size, in bytes, of the dataspace in RAM, including both static and
dynamic data items.

Static Size Size, in bytes, of static segment of the dataspace in RAM.

The value of this field must be less than or equal to the value of the
Initial Size field. The value of this field must also be a multiple of 4, so
that dynamic data is aligned on 4-byte boundaries. Round up from the
actual size of the static data.

Default Data Size Size, in bytes, of the flattened stream of dataspace default values
stored in the file. This size includes both static and dynamic default
data sub-segments.

Dynamic Default Offset Offset, in bytes, to the start of dynamic default data, relative to the start
of all default data in the file

Dynamic Default Size Size, in bytes, of dynamic default data. This value always equals the
Default Data Size minus the Dynamic Default Offset.

Memory Manager Head DVA index to the initial head element of the memory manager’s linked
list of dope vectors.

Memory Manager Tail DVA index to the tail element of the memory manager’s linked list of
dope vectors.

Dope Vector Offset Offset, in bytes, to the initial location of DV data in RAM, relative to the
start of the dataspace pool in RAM.

Note that Initial Size must be small enough to fit in the 32KB pool along with the program’s run-time
clump data. Refer to the Clump Records section in this document for more information about run-time
clump data.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 16

Version: 2.0

Dataspace

As covered in the Introduction section of this document, NXT programs support a rich set of options for
storing and arranging run-time data. The dataspace file segment includes all information necessary to
initialize the dataspace during program activation as well as the specifications of data types and layout
needed during program execution. The following table describes these three sub-segments.

Sub-segment Description
Dataspace Table of Contents Compile-time specification of the data types and layout of all

user data items.
Default Static Data Initial values for static dataspace items.
Default Dynamic Data Initial values for dynamic dataspace items.

All three of these sub-segments are variably-sized according to the needs of a given program. The
following sections provide more information about these three sub-segments.

Dataspace Table of Contents

The DSTOC describes the data types and locations of all items in the program’s dataspace. The DSTOC
is the map the VM uses to locate data in RAM and use the proper data type semantics when operating on
that data. Remember that the DSTOC for a particular program is constructed at compile-time and is does
not change at run-time.

DSTOC Records

The DSTOC is organized as a statically-sized and constant value array of fixed-length records. Each
record is four bytes long and has the following structure:

DSTOC Record
Field Type Flags Data Descriptor
Bits 0..7 8..15 16..31

The Type field contains a simple integer type code. The following table describes legal type code values.

Code Name Description
0 TC_VOID Code for unused or placeholder elements
1 TC_UBYTE Unsigned 8-bit integer
2 TC_SBYTE Signed 8-bit integer
3 TC_UWORD Unsigned 16-bit integer
4 TC_SWORD Signed 16-bit integer
5 TC_ULONG Unsigned 32-bit integer
6 TC_SLONG Signed 32-bit integer
7 TC_ARRAY Array of any sub-type
8 TC_CLUSTER Cluster of some list of sub-types
9 TC_MUTEX Mutex data for clump scheduling
10 TC_FLOAT Single-precision 32-bit floating point number

The Flags field is used at program initialization time. In NXT firmware 1.28, the DSTOC is parsed while
run-time dataspace defaults are being constructed in RAM. A value of 0x01 in the Flags field instructs
the firmware to fill a given dataspace item’s memory with zero bytes instead of looking elsewhere in the
file for default values.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 17

Version: 2.0

The Data Descriptor field can take on different meanings depending on the data type involved.

Addressable vs. Non-Addressable Records

Remember that bytecode instruction arguments often take the form of dataspace item IDs that identify
unique entries in the DSTOC. These dataspace item IDs are the “address” of the dataspace item itself.
Even though bytecode instructions never specify the true address of items in RAM, the instruction
interpreter needs only the dataspace item ID to locate the data in RAM and treat it properly according to
data type.

Bytecode instructions cannot address all DSTOC records. That is, not all indexes are legal to use as
arguments. There are two kinds of non-addressable DSTOC entries: TC_VOID entries and sub-type
entries of addressable arrays. TC_VOID entries might occur in programs compiled by LEGO
MINDSTORMS Software 2.0, but they are not strictly necessary. Arrays must be addressed by their
top-level entry. The following section provides more detail about addressing sub-type entries of arrays.

DSTOC Grammar

DSTOC records follow a specific grammar that describes all the possible data types. This grammar is
parsed top-down, which means that that complex data types are defined using an ordered list of multiple
DSTOC records. The first entry, or lowest index, of an aggregate type definition is the “top-level” record.
This entry contains a type code of TC_ARRAY or TC_CLUSTER.

The following three rules describe the DSTOC grammar.

1. Scalar data types use a single DSTOC record. The Data Descriptor of this record
specifies an offset to the data in RAM.

2. Arrays use two or more DSTOC records. The Data Descriptor of the first record specifies
the offset to the array’s dope vector index. Subsequent records specify the complete
sub-type of the array elements.

3. Clusters use two or more DSTOC records. The Data Descriptor of the first record
specifies the number of elements in the cluster. Subsequent records specify a complete
sub-type for each cluster element.

Remember that you can nest aggregate types. If sub-types are arrays or clusters, this grammar is
recursively applied until the aggregate type is fully defined.

Note: There is no limit on the number of nesting levels for aggregate types in NXT
firmware 1.28, but using deeply-nested data types might lead to unpredictable run-time
behavior.

Note that the Data Descriptors of both scalars and arrays specify an unsigned 16-bit offset to data in
RAM, but these offsets are interpreted differently for top-level data type records versus the sub-type
records owned by arrays. Offsets contained in top-level DSTOC records are relative to the beginning of
the dataspace RAM pool, so these offsets are called dataspace offsets. Offsets contained in array
sub-type records are relative to the beginning of an array element in RAM, so these offsets are called
array data offsets.

Array data offsets are needed to describe the internal layout of array elements because the memory
manager might move arrays at run-time. Furthermore, array elements might also be aggregates
themselves. In this situation, the VM first resolves the address of the top-level array elements. The VM
then uses the array data offsets to find any nested data.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 18

Version: 2.0

DSTOC Example

This example illustrates the DSTOC structure and grammar by building an example TOC. In this example,
the DSTOC is shown as a vertical table of records, with indexes increasing downward. Addressable
records have a grey background. Thick black borders surround records that collectively describe a
top-level aggregate type.

For example, imagine a program that uses only one signed 16-bit word. This program uses only the
following DSTOC.

DSTOC

Index
(Dataspace

Item ID)

Type Flags Data Descriptor

0 TC_SWORD 0x00 0x0000

This DSTOC has only one record, and that record is addressable by instructions as dataspace item ID 0.
Because this record describes the only data in the dataspace, that data is to be stored at offset 0x0000.

Now consider the same example program with an array of unsigned bytes added to the
dataspace. This program now uses the following DSTOC.

DSTOC

Index
(Dataspace

Item ID)

Type Flags Data Descriptor

0 TC_SWORD 0x00 0x0000

1 TC_ARRAY 0x00 0x0200

2 TC_UBYTE 0x00 0x0000

Here, the DSTOC record at index 1 describes an addressable array with its dope vector index stored at
dataspace offset 0x0002. Remember that multi-byte fields like Data Descriptor are listed in little-endian
byte order.

The record immediately following a TC_ARRAY record specifies the sub-type. In this case, the record at
index 2 specifies that all elements of array 1 are unsigned bytes. Like all sub-type records owned by an
array, bytecode instructions cannot address entry 2. Furthermore, remember that the offsets stored in
array sub-type data descriptors are relative to the base address of the array. For arrays containing only a
simple scalar sub-type, this offset is always 0x0000.

Clusters also require at least two DSTOC entries. Similarly to arrays, the first record specifies the
start of a cluster definition with the TC_CLUSTER type code. However, the Data Descriptor field
of a cluster contains a count of addressable sub-type entries, not an offset. Subsequent entries
then describe the cluster’s sub-types.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 19

Version: 2.0

Consider this same example program with a cluster added. The cluster contains two signed
bytes. This program now uses the following DSTOC.

DSTOC

Index
(Dataspace

Item ID)

Type Flags Data Descriptor

0 TC_SWORD 0x00 0x0000

1 TC_ARRAY 0x00 0x0200

2 TC_UBYTE 0x00 0x0000

3 TC_CLUSTER 0x00 0x0200

4 TC_SBYTE 0x01 0x0400

5 TC_SBYTE 0x01 0x0500

The records at indexes 3–5 describe the two-element cluster. Index 3 specifies the cluster type
code and that the next two addressable entries belong to this cluster. Indexes 4 and 5 obey the
same rules as any other scalar record. Bytecode instructions can address these records
independently. The Data Descriptors of these records specify dataspace offsets, exactly like
index 0 does. In this case, the first byte is stored at offset 4 (immediately after the 16-bit DV
index at offset 2), and the second byte is stored immediately after that.

The Flags fields for both indexes 4 and 5 are also set to 0x01. This setting indicates that the
example program file does not include explicit default values for these dataspace items. The VM
will use the “default default” value of 0 for both items.

In the previous table, notice that the top-level cluster entry, Index 3 is addressable. In other
words, instruction arguments can refer to top-level clusters as a whole or to any of their
immediately-owned elements. When arguments refer to the whole cluster, the offset of the
cluster’s first element is used to find the cluster in RAM.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 20

Version: 2.0

This example now adds the following nested aggregate types:

1. An array of clusters with two fields: an unsigned byte and a signed word.
2. An array of arrays of unsigned bytes, which you can use to specify an array of strings
3. A cluster containing two unsigned 32-bit longs followed by an array of signed words.

This program now uses the following DSTOC, of which the last 12 records are shown.

DSTOC

Index
(Dataspace

Item ID)

Type Flags Data Descriptor

...

6 TC_ARRAY 0x00 0x0600

7 TC_CLUSTER 0x00 0x0200

8 TC_UBYTE 0x00 0x0000

9 TC_SWORD 0x00 0x0200

10 TC_ARRAY 0x00 0x0800

11 TC_ARRAY 0x00 0x0000

12 TC_UBYTE 0x00 0x0000

13 TC_CLUSTER 0x00 0x0300

14 TC_ULONG 0x00 0x0C00

15 TC_ULONG 0x00 0x1000

16 TC_ARRAY 0x00 0x1400

17 TC_SWORD 0x00 0x0000

Indexes 6–9 define an array of clusters. There are only 3 bytes of actual data in each (cluster)
array element, but 4 bytes are used in RAM because the 16-bit words must be aligned on even
addresses. In cases like this, there must be at least one byte “lost” for padding in each array
element.

In this example, the padding byte occurs between the TC_UBYTE element and the TC_SWORD
element of each cluster. This fact is encoded in the DSTOC via the Data Descriptors of indexes
8 and 9. Index 8 describes only one byte, but the TC_SWORD described by record 9 is stored at
offset 0x0002 relative to the beginning of each array element. Remember that the data
descriptor fields of array sub-type records specify array data offsets relative to the beginning of
each array element. Also, like all array sub-type records, indexes 7–9 are not addressable by
bytecode instructions.

Indexes 10–12 define an array of arrays. The DSTOC data type grammar is fairly
straightforward, where index 10 defines a top-level addressable array and indexes 11 and 12
specify that each array element is an array of unsigned bytes. The run-time significance of the
data descriptor fields is a little less obvious and involves nested usages of dope vectors. Refer to
the Dynamic Data Management section of this document for information about dope vectors.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 21

Version: 2.0

The Data Descriptor of index 10 is the offset to the top-level array’s DV index, which is stored in
the static dataspace. When the VM uses this DV to find the top-level array contents in RAM, it
actually finds an array of DVs – one DV for each sub-array. Resolving the address to the actual
byte arrays involves one more indirection through the DVA. This principle holds for all sub-arrays
nested underneath a top-level addressable array.

Indexes 13–17 define a cluster that contains two 32-bit longs and an array of signed words.
Notice that index 13’s Data Descriptor specifies that there are three elements in the cluster, but
defining the full cluster data type requires four additional DSTOC records. This arrangement
signifies that the two-record array definition is “owned” by the cluster definition.

There is one more detail to point out for this DSTOC example. This example happens to have all
records sorted by offsets into the static dataspace. Notice that index 16 is the last addressable
record, and its Data Descriptor specifies that the array’s DV is stored at offset 0x0014. Because
this DSTOC is sorted by offset, we can infer from this record that this program’s static dataspace
would be 22 bytes long by adding 2 bytes for the DV to the last offset of 0x0014. However, there
is no requirement that the DSTOC be sorted by offset. The compiler can arrange the DSTOC in
any order, as long as the grammar is preserved and bytecode instruction arguments always refer
to addressable records.

Default Values for Static Data

Default values for the static dataspace items are listed immediately after the DSTOC, and the layout of
this sub-segment depends entirely on the DSTOC contents.

This sub-segment is best thought of as a flattened stream of default values that obeys the following three
rules:

1. Static default values must be packed into the stream in the same order in which their
corresponding records occur in the DSTOC.

2. Static default values are tightly packed in the stream. That is, padding is not used to enforce
alignment of multi-byte fields. This arrangement is possible because these values are processed
as a flat stream of bytes at program activation time and are never accessed during program
execution.

3. Not every static dataspace item actually has a default value in the stream. If the corresponding
DSTOC record’s Flags field contains the value of 0x01, the RAM associated with that item is
automatically initialized to 0.

A corollary to these rules is that the size of this default value stream must be less than or equal to the
Static Size field listed in the dataspace header. This stream will be smaller than Static Size for a vast
majority of programs, though, because rules 2 and 3 mean that the static default stream is often
compressed by ignoring alignment and zero default values.

Furthermore, the actual size of the static default stream must be consistent with the dataspace header
fields Default Data Size and Dynamic Default Offset. Because Default Data Size includes both static and
dynamic defaults and the dynamic defaults are stored immediately after the static default stream, the
Dynamic Default Offset field also specifies the static default stream’s size.

Remember that each addressable array record in the DSTOC uses its Data Descriptor field to refer to a
dope vector index stored in the static dataspace. These DV indexes must always have default values in
the default data stream. In other words, the DSTOC ignores the Flags field of array records.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 22

Version: 2.0

Note: Mutex record default data resides in the static default stream, but has one special
restriction: the 32 bits reserved for each mutex record must always have a default value
of 0xFFFFFFFF, which signifies that the mutex is uninitialized. Mutex record values are
initialized automatically at program run-time.

Default Values for Dynamic Data

Default values for the dynamic dataspace are handled differently from the static dataspace defaults.
First, remember that only arrays are stored in the dynamic dataspace. As such, think of the dynamic
default stream as a collection of default arrays, including default values for all of their initial elements.
This collection of arrays also includes the default dope vector array. Refer to the Default Dope Vectors
section of this document for more information about this array.

The second difference is that the dynamic default stream is a direct image of all initial values in the
program’s dynamic dataspace. In other words, the dynamic default stream must be formatted such that it
can be copied directly into the dynamic dataspace segment of RAM without modification.

This formatting means that this default stream must include any necessary padding for any data types it
includes. Because all arrays must start on 4-byte boundaries, it is common to have some padding bytes
between individual array entries. The compiler must also provide padding as needed within array data.
For example, consider an array of 3-byte clusters that each contain a 16-bit word and a byte. This array
would require a padding byte after each element to keep the 16-bit words aligned on the appropriate
boundaries.

It is important to distinguish between alignment requirements within the dynamic default stream from the
requirements on the stream itself. There are no requirements that the default stream start on any
particular alignment boundary within the file, since it is copied as an arbitrary stream of bytes. As
discussed above, though, alignment rules must be followed within the stream such that all internal data
fields are aligned relative to the start of the stream.

Default Dope Vectors

Remember that the dope vector array (DVA) is itself a dynamic array. Refer to the Dynamic Data
Management section of this document for more information about dope vectors. Each dope vector in the
DVA has a default value, and these default dope vectors must reside inside the dynamic default stream.

For simplicity, default dope vector data should be placed at the front of the dynamic default stream, but
this placement is not required. As long as the Dope Vector Offset field of the Dataspace Header can be
used to find the DVA in RAM, the DVA can exist anywhere within the dynamic data.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 23

Version: 2.0

Each dope vector consists of five fields, and each field is a 2-byte unsigned word. The following table
describes these fields.

Field Description
Offset Offset to the start of this array’s data in RAM relative

to the beginning of all user data.
Element Size The size, in bytes, of each array element.
Element Count The number of elements currently contained in this

array.
Back Pointer An unused placeholder in NXT firmware 1.28.
Link Index The index of the next DV in the memory manager’s

linked list.

Remember that the compiler is responsible for calculating the initial layout of all data in RAM. This
calculation includes the Dope Vector Offset field in the dataspace header and each individual dope
vector’s Offset field. All offsets used by the memory manager are relative to the start of the dataspace
pool in RAM.

The Element Size field specifies the size of each array element in the array described by a dope
vector. This size must include any padding required by cluster sub-types. If an array contains sub-
arrays, Element Size is always two because the element actually stored in RAM is a 2-byte dope
vector index.

Dope vectors describing empty arrays have an Offset equal to 0xFFFF and an Element Count equal
to 0.

Note: The default value of the Back Pointer field is ignored in NXT firmware 1.28.
However, you must include these two bytes because the dynamic default stream is
copied directly into RAM.

Remember that the DVA contains its own dope vector as its first entry. This special DV, or the root dope
vector, is required in every program. The Offset field of the root DV must have a default value equal to
the Dope Vector Offset in the dataspace header and an Element Size of 10. This value of 10 is equal
to the fixed size of each DV entry in the DVA. If the program does not contain any actual user arrays,
the DVA must contain only the root DV entry, with the Element Count equal to 1.

The Link Index field is used to initialize this linked-list, so this field must contain a valid index into the DVA
for all DVs, with three exceptions:

1. The root DV is not included in the memory manager’s linked-list, so its Link Index field is ignored.
It is recommended that the compiler always set this field to 0xFFFF.

2. Because the root DV has a DVA index of 0, no DV can contain a Link Index of 0.
3. The final dope vector in the linked-list must have a Link Index value of 0xFFFF, which

terminates the list.

The Link Index values of all non-root DVs must be arranged such that traversing the linked-list yields
ascending values for the Offset field. Also remember that the dataspace header contains two fields which
specify the head and tail indices of this linked-list: Memory Manager Head and Memory Manager
Tail. These two fields must be consistent with the link indexes in the default DVA.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 24

Version: 2.0

Clump Records

The Clump Record segment describes how the codespace is partitioned into chunks of instructions, or
clumps, and how these clumps should be scheduled at run-time. The total number of clump records is
recorded in Clump Count field in the file header. Refer to the File Header section of this document for
more information about this field.

The following table describes the fields in the Clump Record segment.

Field Byte Count Description
Fire Count 1 Unsigned byte that specifies when this clump is ready to

run.
Dependent

Count
1 Unsigned byte that specifies the number of clumps in the file

that are dependent on this clump.
Code Start

Offset
2 Unsigned word that specifies the offset into the codespace

at which this clump’s instructions begin.
Dependent

List
variable Array of unsigned bytes that specifies the indexes of all

clumps that are dependent on this one.

In practice, the dependent lists are packed in a separate sub-segment of the file immediately after all of
the fixed-length clump records, or the first four bytes. This practice keeps the fixed-length records aligned
in memory while reducing wasted space.

So, for a program consisting of n code clumps, the clump record segment will consist of n four-byte
records (Fire Count, Dependent Count, and Code Start Offset), followed by the packed list of all
dependents. The Dependent Count field might be 0 for any or all clumps, so the full dependent list might
actually be empty, e.g., have a length of 0. Dependent lists for each clump are packed together in the
same order as their corresponding fixed-length clump records are listed in the file.

When a program is initialized, the file’s clump record data is inflated into an array of run-time clump
records in RAM. This array contains bookkeeping data internal to the VM. These run-time clump records
remain in the same order as they occur in the file, and each entry in any given clump’s dependent list is
an index into this array.

The NXT firmware 1.28 permits a maximum of 255 clumps per program. Furthermore, each clump
requires 15 bytes of run-time clump data in the program’s 32KB RAM pool. This clump data must fit in
the pool alongside all static and dynamic data.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 25

Version: 2.0

Codespace

This section provides information about the Codespace segment of executable files. The codespace
consists of 16-bit code words which are interpreted as variable-length instructions. The codespace is a
constant stream of instructions, that is, there must not be any padding bytes or other non-instruction data
in between instructions. Remember that the VM logically divides this stream into clumps via the data in
the Clump Records.

Note: In order to be consistent with how bytes are stored in .RXE files, the structure of all
code words is presented here in little-endian byte order. Also, individual bits are
identified from left to right, that is, bit 0 is the most significant bit of the least significant
byte.

Instructions always consist of one or more code words, but there are two types of encoding: long
instructions and short instructions. You can use both types together in the codespace. Regardless of the
encoding type, bits 12..15 of an instruction’s first code word is always reserved for the Flags field.

Bit 12 determines the type of encoding. If this bit is 0, the instruction uses long encoding. If this bit is 1,
the instruction uses short encoding.

Long Instruction Encoding

The long encoding is the simplest instruction format, and most classes of instructions support only long
encoding.

The first word of a given instruction contains the opcode, size, and flags. The second and any
subsequent words are instruction-specific arguments.

For example, the following table describes the structure of a two-argument instruction.

 Word 1 Word 2 Word 3
Field Opcode Size Flags Argument 1 Argument 2
Bits 0..7 8..11 12..15 0..15 0..15

In short, a long-encoded instruction consists of one opcode word and one or more argument words.

Opcode

The opcode is an unsigned byte that uniquely identifies what class of instruction this is. Refer to the
Instruction Reference section for information about individual opcodes, or instructions.

Size

For most instructions, four bits of Word 1 are used for the total instruction size in bytes. This includes the
opcode word and all arguments. For example, the size of the two-argument example in the above table is
6. This design allows efficient traversal of the codespace at run-time. Most instructions fit into a four bit
size specification. Larger instructions use a reserved size field value of 0xE, and the actual size is
stored as the first 16-bit argument. OP_ARRBUILD is an example of an instruction that uses this
encoding.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 26

Version: 2.0

Flags

Instructions involving comparison of two values include a comparison code in the lower three bits of the
Flags field. Refer to the Comparison Operations section of this document for information about
supported comparison codes.

Short Instruction Encoding

Some instances of common instructions might use an alternate encoding to save memory space. For
example, OP_MOV can be encoded in two words (instead of three in the long encoding) if its Source and
Destination arguments are close to each other in the DSTOC.

Using the short encoding depends on the compiler’s ability to arrange the dataspace such that either:

 The sole argument of a one-argument instruction will fit into a single byte.

 OR

 The first argument of a two-argument instruction can be expressed as a signed-byte offset from
this instruction’s second argument.

For each instruction that meets one of these criteria, that instruction’s first code word is reorganized. The
Size field remains the same as the long encoding type, but the Flags and Opcode fields are used
differently from that type.

For a short instruction, bit 12 is set to 1 and the remaining three bits of Flags are set to a special short
opcode. This reuse of the Flags field means that instructions requiring comparison codes may not be
optimized in this way. The Opcode field is replaced with a single byte argument that is interpreted
differently depending on which short encoding variant is being used.

For instructions with only one argument, the short encoding fits into only one code word. The following
table describes the structure of this word.

Word 1
Field Argument Size 1 Op
Bits 0..7 8..11 12 13..15

In the above table, the instruction’s sole argument fits into the 8-bit field that the long encoding uses for
the Opcode field. At run-time, the value in this 8-bit argument is treated as if it were a normal 16-bit
unsigned code word.

For instructions with two arguments, the short encoding has the following structure:

Word 1 Word 2
Field Offset Size 1 Op Argument 2
Bits 0..7 8..11 12 13..15 0..15

For two argument short instructions, the true value of the first 16-bit unsigned argument, Argument 1, is
calculated at run-time using this simple equation:

Argument 1 = Argument 2 + Offset

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 27

Version: 2.0

Remember that Offset is a signed 8-bit value, which means the value of Argument 1 must fall within a
range +127 or -128 from Argument 2.

The table below lists supported values for the Op field, along with the corresponding instruction. Refer to
the Instruction Reference section of this document for information about these instructions.

Op Value Name Instruction
0 SHORT_OP_MOV OP_MOV

1 SHORT_OP_ACQUIRE OP_ACQUIRE

2 SHORT_OP_RELEASE OP_RELEASE

3 SHORT_OP_SUBCALL OP_SUBCALL

Argument Formats

Regardless of long or short encoding, instruction arguments are all ultimately resolved as 16-bit values.
A given argument word might be interpreted as either a reference to an item in the dataspace or as an
immediate value, depending on the particular instruction.

Dataspace Item IDs

Most instructions operate exclusively on typed data stored in the program’s dataspace. Arguments
referring to these dataspace items take the form of an unsigned 14-bit index into the DSTOC stored in a
16-bit code word. These indexes uniquely identify items in the dataspace, so they are called dataspace
item IDs.

Note: The two most significant bits of dataspace item ID code words are reserved for
internal use by the NXT firmware 1.28. This means that programs are limited to a
maximum of 16,383 addressable dataspace items.

These indexes can refer to DSTOC entries with any of the legal data types: scalar, array, cluster, or
mutex. The instruction interpreter indexes the DSTOC table, resolves the data’s actual location in RAM,
and then takes the appropriate actions according to the bytecode instruction and data types involved.

Remember that not all indexes in the DSTOC can be used as legal instruction arguments. Specifically,
bytecode instructions cannot refer to any sub-type entries associated with a top-level array. Instead, top-
level arrays must be indexed or otherwise modified to access their sub-elements. Refer to the
Addressable Records vs. Non-Addressable Records section of this document for more information
about these restrictions.

There is one special reserved dataspace item argument, NOT_A_DS_ID, signified by the value 0xFFFF.
NOT_A_DS_ID is never a valid index into the DSTOC. Some instructions allow their arguments to take
this value and assign special meaning to it. This behavior may be thought of in similar terms to the use of
default function arguments in other languages.

For example, you can use NOT_A_DS_ID for the Index argument of the array-indexing instruction
OP_INDEX. This instruction then substitutes the default value of 0 instead of looking in the dataspace for
an index. In this situation, using NOT_A_DS_ID avoids the overhead of storing common default values in
the dataspace.

Refer to the Instruction Reference section of this document for details on instruction-specific behavior,
including how certain instructions use NOT_A_DS_ID.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 28

Version: 2.0

Refer to the Run-time Data, Polymorphic Instructions, and Dataspace Table of Contents sections of
this document for information about general dataspace structure, polymorphic behavior, and the DSTOC.

Immediate Values

Some instructions take arguments in which the value used at run-time is stored directly in the code words
rather than using the argument code words as references to dataspace items. These arguments are
called immediate values.

Immediate values take on very instruction-specific meanings. The Instruction Reference section of this
document lists these meanings. Examples of instructions that use immediate values include OP_JMP,
OP_SYSCALL, and OP_SETIN. All variable-length instructions, such as OP_ARRBUILD, also use an
immediate argument to specify the size of the instruction.

Clump Termination

All clumps must include at least one clump termination instruction. Use the OP_FINCLUMP or
OP_FINCLUMPIMMED instructions to terminate clumps that have dependent clumps. Use OP_SUBRET to
terminate subroutine clumps. Refer to the Bytecode Scheduling section of this document for information
about how the VM schedules clumps.

Clump termination instructions are typically the last instruction in a given clump.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 29

Version: 2.0

EXAMPLE PROGRAM: ADDING SCALAR NUMBERS

The following example analyzes the contents of actual executable .RXE file as it might appear when
viewed via a PC hex editor. This example assumes you are familiar with the file segments described
earlier in this document. Refer to the File Header, Dataspace, Clump Records, and Codespace
sections for more information about the file segments.

All file data is presented in tables of hexadecimal 16-bit code words in little-endian byte order. The
left-most column shows the hexadecimal offset of the first byte for a given line, or that line’s base offset.
Since each data column represents two bytes, the offset of a given word is computed by adding two to
the line’s base offset for each word to its left.

Unless otherwise noted, all offsets in this example are zero-based and given in bytes.

Note that .RXE files are packed binary files, meaning that organizing them into 16-byte lines is done only
for the purposes of this document – at run-time, the firmware treats files as arbitrarily-addressable byte
streams.

Example Code

This example illustrates a simple “one line” program which adds two integer source numbers and stores
the result into a destination in the dataspace. A pseudocode representation of this program looks like
this:

Destination is a signed 32-bit integer with an initial value of 0.
Source1 is a signed 32-bit integer with a value of 5000.
Source2 is an unsigned 8-bit integer with a value of 1.

Destination = Source1 + Source2

The entire file contents (84 bytes) are listed in this table:

Offset Data
0000000 4D69 6E64 7374 6F72 6D73 4E58 5400 0005
0000010 0300 1600 0C00 0F00 0500 0A00 0000 0000
0000020 0C00 0100 0700 0601 0000 0600 0400 0100
0000030 0800 8813 0000 010C 000A 0001 00FF FFFF
0000040 FFFF 0000 0000 0080 0000 0100 0200 2A60
0000050 FFFF FFFF

Header Segment

The fixed-length header fields take up the first 38 bytes of the file. This segment is repeated in the table
below:

Offset Data
0000000 4D69 6E64 7374 6F72 6D73 4E58 5400 0005
0000010 0300 1600 0C00 0F00 0500 0A00 0000 0000
0000020 0C00 0100 0700

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 30

Version: 2.0

The first line, of course, is the format string. The first fourteen bytes are ASCII characters, spelling out
‘MindstormsNXT’ (followed by a null padding byte). The last two bytes contain the file format version,
0x0005 (big-endian). Remember that all RXE files supported by NXT firmware version 1.28 share these
exact 16 bytes in common.

Starting from offset 0x10, the next nine words describe the count, size, and arrangement of the program’s
dataspace items. The last two words hold the ‘Clump Count’ and ‘Code Word Count’ fields.

Converting these header words to decimal fields, we can see that:

 This program has 3 addressable dataspace items.
 The initial dataspace size in RAM will be 22 bytes.
 Of those 22 bytes of RAM, 12 belong to statically-sized dataspace items.
 There are 15 bytes of default data in the file.
 Dynamic data defaults start at byte offset 5, relative to the first byte of all default data.
 There are 10 bytes of flattened dynamic default data in the file.
 The memory manager’s head and tail indices both default to 0.
 Dope vector data will start at byte offset 12, relative to the first byte of the dataspace in RAM.
 This program has 1 clump.
 The codespace of this program contains 7 code words.

This particular example does not actually use any dynamically-sized data, so only the fields having to do
with statically-sized data are actually used.

Dataspace Segment

The dataspace segment begins at offset 0x26 and takes up 27 bytes.

Offset Data
0000020 0601 0000 0600 0400 0100
0000030 0800 8813 0000 010C 000A 0001 00FF FFFF
0000040 FFFF

First, note the byte shown in bold at offset 0x41. Because all segments must start on a 16-bit boundary
and this segment has an odd size, a padding byte is needed here. The value of the padding byte is
unimportant – MINDSTORMS NXT Software 2.0 happens to use 0xFF.

The dataspace table-of-contents takes up the first 6 words of this segment, and is comprised of a 4-byte
record for each of the 3 dataspace items. Decoding these records yields the following table:

DSTOC

Index Type Flags Data Descriptor

0 0x06 (TC_SLONG) 0x01 0x0000

1 0x06 (TC_SLONG) 0x00 0x0004

2 0x01 (TC_UBYTE) 0x00 0x0008

Note that all of the data items in this example are simple scalar numbers and all records in the DSTOC
are addressable by bytecode arguments.

The ‘Flags’ field for item 0 contains 0x01. This means that its default value is zero, so there was no need
to store default data in the file. When the run-time dataspace is constructed in RAM, the appropriate
bytes will automatically be initialized to zero.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 31

Version: 2.0

For items 1 and 2, ‘Flags’ does not have the zero-default bit set, so we must look in the next file
sub-segment for default values. Item 1’s default value is four bytes long (as item 1 is an SLONG) and
can be found at file offset 0x32. Converting the little-endian SLONG value of 0x88130000 to decimal
yields what we expect: 5000. Similarly, item 2’s single byte default data is at offset 0x36 and contains the
decimal value 1.

Remember that for scalar dataspace items, the data descriptor specifies a given item’s address in RAM
relative to the dataspace base address. Since the size of each data item is determined solely by the type
code, the DSTOC entry is all that is needed for the VM to access static scalar data.

The 10 bytes of dynamic default data at offset 0x37 represent an empty default dope vector array. This
program does not use any dynamic data, but remember that at least one default dope vector is always
required. Refer to the Default Dope Vectors section of this document for more information.

Clump Record Segment

The clump record segment of this file starts at offset 0x42. This program contains only one clump, so the
clump record segment is exceedingly simple.

Offset Data
0000040 0000 0000

Decoding this clump record data, we see that this program’s only clump has a ‘Fire Count’ field of zero,
no dependents, and its code is (of course) right at the front of the codespace.

Fire Count Dependent Count Code Start Index
0x00 0x00 0x0000

Codespace Segment

The remaining words of this file, starting at offset 0x46, are comprised of two bytecode instructions.

Offset Data
0000040 0080 0000 0100 0200 2A60
0000050 FFFF FFFF

When examining instructions in the little-endian file format, it is easiest to examine code words from right
to left.

Decoding the first code word, we see that:

 This instruction uses the long encoding – bit 12 is ‘0’.
 The instruction size is 8 bytes, including this code word.
 The opcode is 0x00, or OP_ADD.

Putting these facts together and converting the three arguments to big-endian notation yields a more
human-readable instruction:

OP_ADD 0x0000, 0x0001, 0x0002

This instruction performs the task this program set out to accomplish: add Source1 (0x0001) to Source2
(0x0002) and store the result in the Destination (0x0000).

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 32

Version: 2.0

Applying the same process to the remaining code words yields the next (and last) instruction:

OP_FINCLUMP 0xFFFF, 0xFFFF

This instruction terminates the program’s only clump. The value 0xFFFF is used as a special flag value
for both arguments because this clump has no dependent clumps.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 33

Version: 2.0

INSTRUCTION REFERENCE

All supported instructions are listed in this section, sorted by instruction class. There are six instruction
classes:

 Math
 Logic
 Comparison
 Data Manipulation
 Control Flow
 System I/O

Notes specific to particular classes of instructions are included in the sub-sections below.

In general, instruction descriptions include a summary of the instruction’s actions followed by any
applicable notes or restrictions. Unless otherwise noted, instruction arguments must be valid dataspace
item IDs (see Argument Formats).

Note: Compiler authors should be careful to ensure that instruction arguments are valid
for each given instruction. Invalid dataspace item IDs and/or data types may result in a
fatal run-time error condition, causing the program to halt and display of File Error on
the NXT brick’s screen.

Math Instructions

Use math instructions to perform mathematical operations on items in the dataspace.

All math instructions require valid dataspace item IDs for all arguments and are polymorphic on input data
types. All inputs and outputs must follow the data type compatibility rules described in the Polymorphic
Instructions section. Instructions with two inputs accept any compatible combination of input data types.

Instruction: OP_ADD

Opcode: 0x00

Arguments: Destination, Source1, Source2
Description: Add Source1 and Source2; and store result into Destination.

Instruction: OP_SUB

Opcode: 0x01

Arguments: Destination, Source1, Source2
Description: Subtract Source2 from Source1; store result into Destination.

Instruction: OP_NEG

Opcode: 0x02

Arguments: Destination, Source
Description: Negate Source by using the two's complement method; store result into

Destination.

Instruction: OP_MUL

Opcode: 0x03

Arguments: Destination, Source1, Source2
Description: Multiply Source1 by Source2; store result into Destination.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 34

Version: 2.0

Instruction: OP_DIV

Opcode: 0x04

Arguments: Destination, Source1, Source2
Description: Divide Source1 by Source2; store result into Destination. If Source2 is 0, store

0 into Destination.

Instruction: OP_MOD

Opcode: 0x05

Arguments: Destination, Source1, Source2
Description: Divide Source1by Source2; store remainder into Destination. If Source2 is 0,

store Source1 into Destination.

Instruction: OP_SQRT

Opcode: 0x36

Arguments: Destination, Source
Description: Calculate square root of Source; store result in Destination.

Instruction: OP_ABS

Opcode: 0x37

Arguments: Destination, Source
Description: Calculate absolute value of Source; store result in Destination.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 35

Version: 2.0

Logic Instructions

Use logic instructions to perform logical (binary) operations on items in the dataspace.

All logic instructions require valid dataspace item IDs for all arguments and are polymorphic on input data
types. All inputs and outputs must follow the data type compatibility rules described in the Polymorphic
Instructions section of this document. Instructions with two inputs accept any compatible combination of
input data types.

Instruction: OP_AND

Opcode: 0x06

Arguments: Destination, Source1, Source2
Description: Perform bitwise AND operation on Source1 and Source2; store result into

Destination.

Instruction: OP_OR

Opcode: 0x07

Arguments: Destination, Source1, Source2
Description: Perform bitwise OR operation on Source1 and Source2; store result into

Destination.

Instruction: OP_XOR

Opcode: 0x08

Arguments: Destination, Source1, Source2
Description: Perform bitwise XOR operation on Source1 and Source2; store result into

Destination.

Instruction: OP_NOT

Opcode: 0x09

Arguments: Destination, Source
Description: Perform Boolean NOT operation on Source; store TRUE or FALSE (1 or 0) into

Destination.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 36

Version: 2.0

Comparison Instructions

Use comparison instructions to test dataspace values against each other, or against 0, and produce a
Boolean result.

The exact kind of comparison performed depends on the instructions comparison code, which is stored in
the Flags field, and the data types involved. The following table describes the legal comparison codes.

Comparison Type Code
< (less than) 0
> (greater than) 1
<= (less than or equal to) 2
>= (greater than or equal to) 3
== (equal to) 4
!= (not equal to) 5

Comparison instructions can perform aggregate comparison or element comparison depending on the
data types involved. In other words, the Boolean results described below may have a scalar or aggregate
data type, and the instruction interpreter will apply the comparison code accordingly. See the
Polymorphic Comparisons section for more details.

All comparison scenarios can be handled by one instruction, OP_CMP, but the NXT firmware 1.28 also
includes an optimized variant, OP_TST. This instruction requires only one input because comparison
against zero is implied. This saves the space needed to store otherwise useless dataspace items filled
with zeroes.

Both comparison instructions require valid dataspace item IDs for all arguments and are polymorphic on
input data types. All inputs and outputs must follow the data type compatibility rules described in the
Polymorphic Instructions section. Output data types are further restricted by the rules described in the
Polymorphic Comparisons section

Instruction: OP_CMP

Opcode: 0x11

Arguments: Destination, Source1, Source2
Description: Compare Source1 to Source2 according to comparison code; store Boolean result

into Destination.

The data types of all three arguments must be consistent with the rules described in
the Polymorphic Comparisons section of this document.

Instruction: OP_TST

Opcode: 0x12

Arguments: Destination, Source
Description: Compare Source to 0 according to comparison code; store Boolean result into

Destination.

If Source has a scalar data type, this instruction compares Source against 0 to
produce a single Boolean result.
If Source has an aggregate data type, this instruction compares each element of
Source against 0 to produce an aggregate of Boolean results. Refer to the
Polymorphic Comparisons section of this document for information about element
comparison vs. aggregate comparison.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 37

Version: 2.0

Data Manipulation Instructions

Use data manipulation instructions to move and otherwise manipulate items in the program’s dataspace.

All array indices are zero-based; all instructions accepting an “Index” scalar input argument treat index
value 0 as the first element of an array.

Note: Compiler authors should take care to carefully distinguish between text strings and
regular unsigned byte arrays. The string manipulation instructions below assume that
text strings arguments include a null-termination byte, but the regular array manipulation
instructions do not. The VM does not distinguish between these data types, so it is
important that the compiler enforces the distinction.

Instruction: OP_INDEX

Opcode: 0x15

Arguments: Destination, Source, Index
Description: Index array at Source by Index; store element into Destination.

The data type of Destination and sub-type of Source must be compatible.
Source must refer to a top-level array of any sub-type.
Index must refer to a scalar number or use NOT_A_DS_ID.
If Index is NOT_A_DS_ID, this instruction uses a default value of 0.

Instruction: OP_REPLACE

Opcode: 0x16

Arguments: Destination, Source, Index, NewVal
Description: Replace subset of array Source, starting at Index, with the contents of NewVal;

store resulting array into Destination.

The data type of Destination and sub-type of Source must be compatible.
Index must refer to a scalar number or use NOT_A_DS_ID.
If Index is NOT_A_DS_ID, this instruction uses a default value of 0.
NewVal can be any array compatible with Source or any data type compatible with
the sub-type of Source.

If Index is out of range for Source, NewVal will be ignored and Destination will
be replaced with the contents of Source.

Instruction: OP_ARRSIZE

Opcode: 0x17

Arguments: Destination, Source
Description: Store count of elements in array Source into scalar Destination.

Instruction: OP_ARRBUILD

Opcode: 0x18

Arguments: InstrSize, Destination, Source1, Source2, … SourceN
Description: Build array Destination out of one or more Source items. Source items may be

any data type, including arrays. Array sources will be concatenated to form the
destination array.

InstrSize is an immediate value that specifies the total instruction size, in bytes.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 38

Version: 2.0

Instruction: OP_ARRSUBSET

Opcode: 0x19

Arguments: Destination, Source, Index, Count
Description: Store subset of array at Source into array at Destination, starting at Index and

including Count elements.

Index must refer to a scalar number or use NOT_A_DS_ID.
If Index is NOT_A_DS_ID, this instruction uses a default value of 0.

Count must be a scalar number or use NOT_A_DS_ID.
If Count is NOT_A_DS_ID, the source element at Index and all elements past it are
copied into Destination. That is, the effective value of Count in the following
way:

Count = (length of Source) – Index

Instruction: OP_ARRINIT

Opcode: 0x1A

Arguments: Destination, NewVal, Count
Description: Initialize array Destination with Count copies of NewVal.

If Count is 0, the Destination array will be empty.
If Count is NOT_A_DS_ID, this instruction uses a default value of 0.

Instruction: OP_MOV

Opcode: 0x1B

Arguments: Destination, Source
Description: Store copy of Source into Destination.

Instruction: OP_SET

Opcode: 0x1C

Arguments: Destination, Immediate
Description: Set scalar Destination to 16-bit value Immediate.

Destination must have a scalar data type.
The literal value of the 16-bit argument Immediate is read as an unsigned word and
stored directly into Destination.

Instruction: OP_FLATTEN

Opcode: 0x1D

Arguments: Destination, Source
Description: Flatten data at Source into byte array (string) at Destination.

Instruction: OP_UNFLATTEN

Opcode: 0x1E

Arguments: Destination, Error, Source, Default
Description: Unflatten data from byte array (string) at Source and store into Destination.

Default must match the flattened data type exactly, including array sizes. If not,
Error will be set to TRUE and Destination will contain a copy of Default.

Instruction: OP_NUMTOSTRING

Opcode: 0x1F

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 39

Version: 2.0

Arguments: Destination, Source
Description: Convert number at Source into decimal text (string); store result into Destination.

Output depends on data type and value of Source. If the data type is any integer
type, the output is a decimal text. If the data type is TC_FLOAT, the output is
formatted using the C function strcpy with a %.2f format string. If the output is
wider than the NXT screen, then a %.6g format string is used. Trailing zeros are
dropped.

Instruction: OP_STRINGTONUM

Opcode: 0x20
Arguments: Destination, IndexPast, Source, Index, Default
Description: Convert decimal number in text string at Source into an integer number; store result

into Destination. Source string may contain multiple numbers and/or non-numeric
characters; Index leading characters will be skipped and the integer value at
Default will be used if no valid integer is found in Source. If a valid integer is
found in Source, the index to the next character past the integer is stored in
IndexPast.

Index must refer to a scalar number or use NOT_A_DS_ID.
If Index is NOT_A_DS_ID, this instruction uses a default value of 0.

Default must be a scalar number or use NOT_A_DS_ID.
If Default is NOT_A_DS_ID, a default value of 0 is used.

Instruction: OP_STRCAT

Opcode: 0x21

Arguments: InstrSize, Destination, Source1, Source2, … SourceN
Description: Concatenate one or more source strings; store result into Destination.

InstrSize is an immediate value specifying the total instruction size in bytes.
Destination and each Source argument must be a text string.

Instruction: OP_STRSUBSET

Opcode: 0x22

Arguments: Destination, Source, Index, Count
Description: Store subset of string at Source into string at Destination, starting at Index and

including Count characters.

Index must refer to a scalar number or use NOT_A_DS_ID.
If Index is NOT_A_DS_ID, this instruction uses a default value of 0.

Count must be a scalar number or use NOT_A_DS_ID.
If Count is NOT_A_DS_ID, the source element at Index and all elements past it are
copied into Destination. That is, the effective value of Count in the following
way:

Count = (length of Source) – Index

Instruction: OP_STRTOBYTEARR

Opcode: 0x23

Arguments: Destination, Source
Description: Convert string at Source into an unsigned byte array; store result into

Destination. This instruction removes the NULL terminator at the end of the array.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 40

Version: 2.0

Instruction: OP_BYTEARRTOSTR

Opcode: 0x24

Arguments: Destination, Source
Description: Convert unsigned byte array at Source into string; store result into Destination.

This instruction adds the NULL terminator to the end of the array.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 41

Version: 2.0

Control Flow Instructions

Use control flow instructions to affect how the VM schedules clumps and to branch to new instructions
within clumps.

Remember that all instructions in a program are “owned” by a clump. Control flow instructions are used
to affect how the VM executes the clump owning those instructions. Thus, in the descriptions of control
flow instructions, the phrase “this clump” refers to the clump that owns a particular instruction.

Likewise, “this clump’s program counter” refers to the current instruction index that the VM maintains for
each clump. The instructions OP_JMP, OP_BRCMP, and OP_BRTST all modify their owning clump’s
program counter to specify which of the clump’s instructions should execute next.

OP_BRCMP and OP_BRTST conditionally modify their owning clumps program counter only if their
arguments and comparison code produce a TRUE result. Comparisons performed by these instructions
follow the same rules as OP_CMP and OP_TST.

The instructions OP_FINCLUMP, OP_FINCLUMPIMMED, OP_SUBCALL, and OP_SUBRET affect clump
execution in a different way. These instructions either reset or suspend the current clump and return
control to the VM’s main bytecode scheduling algorithm.

Instruction: OP_JMP

Opcode: 0x25

Arguments: Offset

Description: Adjust this clumps program counter by immediate value Offset (signed word).

Instruction: OP_BRCMP

Opcode: 0x26

Arguments: Offset, Source1, Source2
Description: Compare Source1 to Source2 according to comparison code; if TRUE, adjust this

clump’s program counter by the immediate value Offset (signed word).

Instruction: OP_BRTST

Opcode: 0x27

Arguments: Offset, Source
Description: Compare Source1 to zero according to comparison code; if TRUE, adjust clump

program counter by the immediate value Offset (signed word).

Instruction: OP_STOP

Opcode: 0x29

Arguments: Confirm

Description: Abort the currently running program if Boolean value in Confirm is TRUE (non-zero).

If Confirm is NOT_A_DS_ID, the default value is TRUE.

Note that this instruction aborts all clumps and causes the program to leave RAM
immediately.

Instruction: OP_FINCLUMP

Opcode: 0x2A

Arguments: Start, End

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 42

Version: 2.0

Description: Finish execution of this clump.

If immediate values Start and End are positive integers, they are used to index this
clump’s list of dependents, conditionally scheduling each one within the specified
range.

If immediate values Start and End are negative, they are ignored. No other clumps
are scheduled.

Instruction: OP_FINCLUMPIMMED

Opcode: 0x2B

Arguments: ClumpID

Description: Finish execution of this clump using immediate value ClumpID to conditionally
schedule one target clump.

Instruction: OP_ACQUIRE

Opcode: 0x2C

Arguments: MutexID

Description: Acquire mutex record at dataspace item MutexID. If the mutex is already reserved,
place this clump on wait queue for the specified mutex.

Instruction: OP_RELEASE

Opcode: 0x2D

Arguments: MutexID

Description: Release mutex record at dataspace item MutexID. If the wait queue is not empty,
the next clump in line will automatically acquire the specified mutex and resume
execution.

Instruction: OP_SUBCALL

Opcode: 0x2E

Arguments: Subroutine, CallerID
Description: Call clump specified by immediate clump ID Subroutine and suspend caller (this

clump); save caller’s clump ID at CallerID.

Instruction: OP_SUBRET

Opcode: 0x2F

Arguments: CallerID

Description: Return from subroutine, resuming clump specified by CallerID (see OP_SUBCALL).

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 43

Version: 2.0

System I/O Instructions

Use system I/O instructions to interact with the NXT brick’s built-in I/O devices and other system services.

Refer to the Instruction Reference Appendix section of this document for the valid PropID and
SysCallID values, including legal data types.

Instruction: OP_SYSCALL

Opcode: 0x28

Arguments: SyscallID, ParmCluster
Description: Invoke system call method matching immediate value SyscallID, with call-specific

parameter data included in the cluster referenced by ParmCluster.

Refer to the System Call Methods section of this document for valid values of
SyscallID and system call descriptions.

Instruction: OP_SETIN

Opcode: 0x30

Arguments: Source, Port, PropID
Description: Set input configuration property specified by Port and PropID to the value at

Source. Port and Source must be integers in the dataspace, while PropID must
be an immediate value.

Refer to the Input Port Configuration Properties section of this document for valid
values of for PropID.

Instruction: OP_SETOUT

Opcode: 0x31

Arguments: InstrSize, Port/PortList, PropID1, Source1, … PropIDN, SourceN
Description: Set one or more configuration properties on one or more output ports. Configuration

properties and source values are specified via a series of PropID-Source tuples.

The first argument InstrSize is an immediate value specifying the total instruction
size in bytes.

The second argument can refer to either a single integer Port specifier or an integer
array PortList. If you use a PortList array, each PropID-Source tuple is
applied to each port in the array. The order of port specifiers in the list is
unimportant. Duplicate port specifiers are permitted in the list, but doing so is
redundant.

Source values are written to the corresponding configuration properties in the order
that they occur in the list of PropID-Source tuples. Multiple tuples may specify the
same PropID, but the last tuple in the list will override any earlier tuples with the
same PropID.

Refer to the Output Port Configuration Properties section of this document for
valid values of for PropID.

Instruction: OP_GETIN

Opcode: 0x32

Arguments: Destination, Port, PropID

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 44

Version: 2.0

Description: Set Destination to the value of input configuration property specified by Port and
PropID. Port and Destination must be integers in the dataspace, while PropID
must be an immediate value.

Refer to the Input Port Configuration Properties section of this document for valid
values of for PropID.

Instruction: OP_GETOUT

Opcode: 0x33

Arguments: Destination, Port, PropID
Description: Set Destination to the value of output configuration property specified by Port

and PropID. Port and Destination must be integers in the dataspace, while
PropID must be an immediate value.

Refer to the Output Port Configuration Properties section of this document for
valid values of for PropID.

Instruction: OP_GETTICK

Opcode: 0x35

Arguments: Destination

Description: Store the system tick, or milliseconds since the NXT started up, into Destination.
Destination must be an integer in the dataspace.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 45

Version: 2.0

Instruction Reference Appendix

This appendix includes supplementary material that is relevant to the instruction descriptions listed in the
main Instruction Reference section of this document.

Input Port Configuration Properties

The instructions OP_GETIN and OP_SETIN use the following set of PropID values to specify particular
configuration properties.

Value PropID Data Type
0x0 IO_IN_TYPE TC_UBYTE
0x1 IO_IN_MODE TC_UBYTE
0x2 IO_IN_ADRAW TC_UWORD
0x3 IO_IN_NORMRAW TC_UWORD
0x4 IO_IN_SCALED_VAL TC_SWORD
0x5 IO_IN_INVALID_DATA TC_UBYTE

The following sections describe each input port configuration property in alphabetical order.

ADRAW
Data type: UWORD
Access: Read-only
Legal value range: [0, 1023]

This property specifies the raw 10-bit value last read from the analog to digital converter on this port.
Raw values produced by sensors typically cover some subset of the full 10-bit range.

INVALID_DATA

Data type: UBYTE
Access: Read-Write
Legal values: TRUE (1), FALSE (0)

This property signifies that the values of ADRAW, NORMRAW, and SCALED_VAL might be invalid due to
sensor configuration changes that the NXT firmware has not processed yet. For example, the NXT
firmware might not have processed the sensor type and/or mode changes immediately due to hardware
limitations.

In all cases where you change TYPE or MODE, use the INVALID_DATA property to ensure that the next
value you read back has been properly processed. To do so, set INVALID_DATA to TRUE immediately
after setting TYPE and/or MODE, and then write a while loop that does not exit until INVALID_DATA
becomes FALSE. At that point, the Normalized and Scaled properties will return valid values for the new
configuration.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 46

Version: 2.0

Type

Data type: UBYTE
Access: Read-Write
Legal values:

0x00 NO_SENSOR No sensor configured
0x01 SWITCH NXT or Legacy touch sensor
0x02 TEMPERATURE Legacy temperature sensor
0x03 REFLECTION Legacy light sensor
0x04 ANGLE Legacy rotation sensor
0x05 LIGHT_ACTIVE NXT light sensor with floodlight enabled
0x06 LIGHT_INACTIVE NXT light sensor with floodlight disabled
0x07 SOUND_DB NXT sound sensor; dB scaling
0x08 SOUND_DBA NXT sound sensor; dBA scaling
0x09 CUSTOM Unused
0x0A LOWSPEED 12C digital sensor
0x0B LOWSPEED_9V 12C digital sensor; 9V power
0x0C HIGHSPEED Unused
0x0D COLORFULL NXT color sensor in color detector mode
0x0E COLORRED NXT color sensor in light sensor mode with red light
0x0F COLORGREEN NXT color sensor in light sensor mode with green light
0x010 COLORBLUE NXT color sensor in light sensor mode with blue light
0x011 COLORNONE NXT color sensor in light sensor mode with no light

This property specifies the sensor type for this port. The sensor type primarily affects scaling factors used
to calculate the normalized sensor value, but some values have other side effects.

If you write to this property, also write a value of TRUE to the INVALID_DATA property.

Unlike the Legacy firmware, no default sensor modes are associated with each sensor type. Legacy
refers to the RCX programmable controller used in previous versions of LEGO MINDSTORMS.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 47

Version: 2.0

MODE

Data type: UBYTE
Access: Read-Write
Legal values:

0x00 RAWMODE Report scaled value equal to raw value.
0x20 BOOLEANMODE Report scaled value as 1 (TRUE) or 0 (FALSE). The firmware uses

inverse Boolean logic to match the physical characteristics of NXT
sensors. Readings are FALSE if raw value exceeds 55% of total
range; readings are TRUE if raw value is less than 45% of total
range.

0x40 TRANSITIONCNTMODE Report scaled value as number of transitions between TRUE and
FALSE.

0x60 PERIODCOUNTERMODE Report scaled value as number of transitions from FALSE to TRUE,
then back to FALSE.

0x80 PCTFULLSCALEMODE Report scaled value as percentage of full scale reading for configured
sensor type.

0xA0 CELSIUSMODE Scale TEMPERATURE reading to degrees Celsius.
0xC0 FAHRENHEITMODE Scale TEMPERATURE reading to degrees Fahrenheit.
0xE0 ANGLESTEPMODE Report scaled value as count of ticks on RCX-style rotation sensor.

This property specifies the sensor mode for this port. The sensor mode affects the scaled value, which
the NXT firmware calculates depending on the sensor type and sensor mode.

If you write to this property, also write a value of TRUE to the INVALID_DATA property.

NORMRAW

Data type: UWORD
Access: Read-only
Legal value range: [0, 1023]

This property specifies a 10-bit sensor reading, scaled according to the current value of the TYPE
property on this port. The NXT firmware automatically applies internal scaling factors such that the
physical range of raw values produced by the sensor is mapped, or normalized, to the full 10-bit range.

MODE is ignored when calculating the Normalized value.

The INVALID_DATA property should be read in conjunction with this property. The Normalized value is
only valid if INVALID_DATA is FALSE.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 48

Version: 2.0

SCALED_VAL

Data type: UWORD
Access: Read-Write

The legal value range depends on MODE, as listed below:

RAWMODE [0, 1023]
BOOLEANMODE [0, 1]
TRANSITIONCNTMODE [0, 65535]
PERIODCOUNTERMODE [0, 65535]
PCTFULLSCALEMODE [0, 100]
CELSIUSMODE [-200, 700] (readings in 10th of a degree Celsius)
FAHRENHEITMODE [-400, 1580] (readings in 10th of a degree Fahrenheit)
ANGLESTEPMODE [0, 65535]

This property specifies a sensor reading, scaled according to the current sensor type and mode on this
port.

The INVALID_DATA property should be read in conjunction with this property. The SCALED_VAL value is
only valid if INVALID_DATA is FALSE.

Because some combinations of sensor types and modes might lead to accumulation of count values in
the SCALED_VAL property, you can reset this count by writing 0 to the SCALED_VAL property at any time.
Note that you can write any value to this property at any time, but doing so is not generally very useful
because outside of counter modes, the value is usually overwritten very quickly.

TYPE

Data type: UBYTE
Access: Read-Write
Legal Values:

0x00 NO_SENSOR No sensor configured.
0x01 SWITCH NXT or RCX touch sensor
0x02 TEMPERATURE RCX temperature sensor
0x03 REFLECTION RCX light sensor
0x04 ANGLE RCX rotation sensor
0x05 LIGHT_ACTIVE NXT light sensor with floodlight enabled
0x06 LIGHT_INACTIVE NXT light sensor with floodlight disabled
0x07 SOUND_DB NXT sound sensor; dB scaling
0x08 SOUND_DBA NXT sound sensor; dBA scaling
0x09 CUSTOM Unused in NXT programs
0x0A LOWSPEED I2C digital sensor
0x0B LOWSPEED_9V I2C digital sensor; 9V power
0x0C HIGHSPEED Unused in NXT programs

This property specifies the sensor type for this port. The sensor type primarily affects scaling factors used
to calculate the normalized sensor value NORMRAW, but some values have other side effects.

If you write to this property, also write a value of TRUE (1) to the INVALID_DATA property.

Unlike the RCX firmware, there are no default sensor modes associated with each sensor type.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 49

Version: 2.0

Output Port Configuration Properties

The OP_GETOUT and OP_SETOUT instructions use the following set of PropID values to specify particular
configuration properties:

Value PropID Data Type
0x0 IO_OUT_FLAGS TC_UBYTE
0x1 IO_OUT_MODE TC_UBYTE
0x2 IO_OUT_SPEED TC_SBYTE
0x3 IO_OUT_ACTUAL_SPEED TC_SBYTE
0x4 IO_OUT_TACH_COUNT TC_SLONG
0x5 IO_OUT_TACH_LIMIT TC_ULONG
0x6 IO_OUT_RUN_STATE TC_UBYTE
0x7 IO_OUT_TURN_RATIO TC_SBYTE
0x8 IO_OUT_REG_MODE TC_UBYTE
0x9 IO_OUT_OVERLOAD TC_UBYTE
0xA IO_OUT_REG_P_VAL TC_UBYTE
0xB IO_OUT_REG_I_VAL TC_UBYTE
0xC IO_OUT_REG_D_VAL TC_UBYTE
0xD IO_OUT_BLOCK_TACH_COUNT TC_SLONG
0xE IO_OUT_ROTATION_COUNT TC_SLONG

The following sections provide information about each property in alphabetical order.

ACTUAL_SPEED (Interactive Motors Only)

Data type: SBYTE
Access: Read-only
Legal value range: [-100, 100]

This property returns the actual percentage of full power that the NXT firmware is applying to the output
currently. This value can vary from the SPEED set-point when the internal auto-regulation code of the
NXT firmware responds to drag on the output axle.

BLOCK_TACH_COUNT (Interactive Motors Only)

Data type: SLONG
Access: Read-only
Legal value range: [-2147483648, 2147483647]

This property reports the block-relative position counter value for the specified port.

Refer to the output FLAGS section for more information about using block-relative position counts.

Set the UPDATE_RESET_BLOCK_COUNT flag in FLAGS to request that the firmware resets
BLOCK_TACH_COUNT.

The sign of BLOCK_TACH_COUNT specifies the rotation direction. Positive values correspond to forward
rotation while negative values correspond to backward rotation. “Forward” and “backward” are relative to
a standard orientation for a particular type of motor.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 50

Version: 2.0

FLAGS
Data type: UBYTE
Access: Read-Write

This property is a bitfield that can include any combination of the following flag bits:

0x01 UPDATE_MODE Commits changes to the MODE property.
0x02 UPDATE_SPEED Commits changes to the SPEED property.
0x04 UPDATE_TACHO_LIMIT Commits changes to the TACH_LIMIT property

(interactive motors only).
0x08 UPDATE_RESET_COUNT Resets internal movement counters, cancels current goal,

and resets internal error-correction system (interactive
motors only).

0x10 UPDATE_PID_VALUES Commits changes to PID regulation parameters
REG_P_VALUE, REG_I_VALUE, and/or REG_D_VALUE
(interactive motors only).

0x20 UPDATE_RESET_BLOCK_COUNT Resets block-relative position counter (interactive motors
only).

0x40 UPDATE_RESET_ROTATION_COUNT Resets program-relative position counter (interactive
motors only).

This property is an unsigned byte bitfield with zero or more of the bit values above set.

You can use UPDATE_MODE, UPDATE_SPEED, UPDATE_TACHO_LIMIT, and UPDATE_PID_VALUES in
conjunction with other properties to commit changes to the internal state of the NXT firmware. That is,
you must set the appropriate flags after setting one or more of these properties before the changes
actually take affect. For example, write a value of 0x03 (UPDATE_MODE | UPDATE_SPEED) to FLAGS
immediately after you write new values to the MODE and SPEED properties.

The “reset” flags are independent of other properties and produce the side effects described above.

For UPDATE_RESET_BLOCK_COUNT, “block-relative” refers to the way this flag is used in the LEGO
MINDSTORMS NXT Software 2.0. By convention, this flag is set every time an NXT-G motor control
block starts execution. This convention means that the BLOCK_TACH_COUNT property always provides a
position measurement relative to the last NXT-G motor control block to execute.

For UPDATE_RESET_ROTATION_COUNT, “program-relative” refers to the fact that this position counter is
reset automatically at the beginning of every program. Set UPDATE_RESET_ROTATION_COUNT to reset
this counter manually during program execution.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 51

Version: 2.0

MODE

Data type: UBYTE
Access: Read-Write

This property is a bitfield that can include any combination of the following flag bits:

0x01 MOTORON Enables pulse-width modulation (PWM) power to port(s) according to

value of the SPEED property.
0x02 BRAKE Applies electronic braking to port(s).
0x04 REGULATED Enables active power regulation according to value of REG_MODE

(interactive motors only).

This property is an unsigned byte bitfield with zero or more mode bits set. Clearing all bits (a MODE value
of 0x00) is considered COAST mode; motors connected to the specified port(s) will rotate freely.

You must set the MOTORON bit for the NXT firmware to provide any power to the specified output port(s).
Power is provided as a PWM waveform modulated by the SPEED property.

The BRAKE bit enables application of electronic braking to the circuit. “Braking” in this sense means that
the output voltage is not allowed to float between active PWM pulses. Electronic braking improves the
accuracy of motor output, but uses slightly more battery power.

You must use the REGULATED bit in conjunction with the REG_MODE property. Refer to the REG_MODE
section of this document for more information about using the REGULATED bit with the REG_MODE
property.

You must set the UPDATE_MODE bit in the FLAGS bitfield to commit changes to the MODE property.

OVERLOAD (Interactive Motors Only)

Data type: UBYTE
Access: Read-only
Legal values: TRUE (1), FALSE (0)

This property returns TRUE if the speed regulation functionality of the NXT firmware is unable to
overcome physical load on the motor, e.g., the motor is turning more slowly than expected. Otherwise,
this property returns FALSE.

You must set some other appropriately for the value of OVERLOAD to be meaningful. Use the following
guidelines when setting this property:

 The MODE bitfield must include the MOTORON and REGULATED bits.
 REG_MODE must be set to REG_SPEED.
 RUN_STATE must be set to a non-IDLE value.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 52

Version: 2.0

REG_D_VALUE (Interactive Motors Only)

Data type: UBYTE
Access: Read-Write
Legal value range: [0, 255]

This property specifies the derivative term used in the internal proportional-integral-derivative (PID)
control algorithm.

Set UPDATE_PID_VALUES to commit changes to REG_P_VALUE, REG_I_VALUE, and REG_D_VALUE
simultaneously.

REG_I_VALUE (Interactive Motors Only)

Data type: UBYTE
Access: Read-Write
Legal value range: [0, 255]

This property specifies the integral term used in the internal proportional-integral-derivative (PID) control
algorithm.

Set UPDATE_PID_VALUES to commit changes to REG_P_VALUE, REG_I_VALUE, and REG_D_VALUE
simultaneously.

REG_MODE (Interactive Motors Only)

Data type: UBYTE
Access: Read-Write
Legal Values:

0x00 REG_IDLE Disables regulation.
0x01 REG_SPEED Enables speed regulation.
0x02 REG_SYNC Enables synchronization between any two motors.

This property specifies the regulation mode to use with the specified port(s).

This property is ignored if you do not set the REGULATED bit in the MODE property. Unlike the MODE
property, REG_MODE is not a bitfield. You can set only one REG_MODE value at a time.

Speed regulation means that the NXT firmware attempts to maintain a certain speed according to the
SPEED set-point. To accomplish this, the NXT firmware automatically adjusts the actual PWM duty cycle
if the motor is affected by a physical load. This automatic adjustment is reflected by the value of the
ACTUAL_SPEED property.

Synchronization means that the firmware attempts keep any two motors in synch regardless of varying
physical loads. You typically use this mode is to maintain a straight path for a vehicle robot automatically.
You also can use this mode with the TURN_RATIO property to provide proportional turning. You must set
REG_SYNC on at least two motor ports to have the desired affect. If REG_SYNC is set on all three motor
ports, only the first two (A & B) are synchronized.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 53

Version: 2.0

REG_P_VALUE (Interactive Motors Only)

Data type: UBYTE
Access: Read-Write
Legal value range: [0, 255]

This property specifies the proportional term used in the internal proportional-integral-derivative (PID)
control algorithm.

Set UPDATE_PID_VALUES to commit changes to REG_P_VALUE, REG_I_VALUE, and REG_D_VALUE
simultaneously.

ROTATION_COUNT (Interactive Motors Only)

Data type: SLONG
Access: Read-only
Legal value range: [-2147483648, 2147483647]

This property returns the program-relative position counter value for the specified port.

Refer to the output FLAGS section for more information about using program-relative position counts.

Set the UPDATE_RESET_ROTATION_COUNT flag in FLAGS to request that the NXT firmware resets the
ROTATION_COUNT property.

The sign of ROTATION_COUNT specifies rotation direction. Positive values correspond to forward rotation
while negative values correspond to backward rotation. “Forward” and “backward” are relative to a
standard orientation for a particular type of motor.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 54

Version: 2.0

RUN_STATE

Data type: UBYTE
Access: Read-Write

Legal Values:

0x00 RUN_STATE_IDLE Disables power to specified port(s).
0x10 RUN_STATE_RAMPUP Enables automatic ramp-up to the SPEED set-point (interactive

motors only).
0x20 RUN_STATE_RUNNING Enables power to specified port(s) at the SPEED set-point.
0x40 RUN_STATE_RAMPDOWN Enables automatic ramp-down to the SPEED set-point (interactive

motors only).

This property specifies an auxiliary “state” to use with MODE, REG_MODE, and SPEED on the specified
port(s). Set only one of the legal values at a given time.

RUN_STATE_RUNNING is the most common setting. Use RUN_STATE_RUNNING to enable power to any
output device connected to the specified port(s).

RUN_STATE_RAMPUP enables automatic ramping to a new SPEED set-point that is greater than the
current SPEED set-point. When you use RUN_STATE_RAMPUP in conjunction with appropriate
TACH_LIMIT and SPEED values, the NXT firmware attempts to increase the actual power smoothly to the
SPEED set-point over the number of degrees specified by TACH_LIMIT.

RUN_STATE_RAMPDOWN enables automatic ramping to a new SPEED set-point that is less than the
current SPEED set-point. When you use RUN_STATE_RAMPDOWN in conjunction with appropriate
TACH_LIMIT and SPEED values, the NXT firmware attempts to smoothly decrease the actual power to
the SPEED set-point over the number of degrees specified by TACH_LIMIT.

SPEED

Data type: SBYTE
Access: Read-Write
Legal value range: [-100, 100]

This property specifies the power level set-point for the specified port(s).

The absolute value of SPEED is used as a percentage of the full power capabilities of the motor.

The sign of SPEED specifies rotation direction. Positive values for SPEED instruct the firmware to turn the
motor forward, while negative values instruct the firmware to turn the motor backward. “Forward” and
“backward” are relative to a standard orientation for a particular type of motor.

Note that direction is not a meaningful concept for outputs like lamps. Lamps are affected only by the
absolute value of SPEED.

You must set some other properties appropriately for the SPEED setpoint to have the desired effect. Use
the following guidelines when setting this property:

 The MODE bitfield must include MOTORON bit. The BRAKE bit is optional.
 RUN_STATE must be set to a non-IDLE value.

You must set the UPDATE_SPEED bit in the FLAGS bitfield to commit changes to the SPEED property.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 55

Version: 2.0

TACH_COUNT (Interactive Motors Only)

Data type: SLONG
Access: Read-only
Legal value range: [-2147483648, 2147483647]

This property returns the internal position counter value for the specified port. This internal count is reset
automatically when a new goal is set using the TACH_LIMIT and the UPDATE_TACHO_LIMIT flag.

Set the UPDATE_RESET_COUNT flag in FLAGS to specify that the NXT firmware resets TACH_COUNT and
cancels any current programmed goals.

The sign of TACH_COUNT specifies rotation direction. Positive values correspond to forward rotation while
negative values correspond to backward rotation. “Forward” and “backward” are relative to a standard
orientation for a particular type of motor.

TACH_LIMIT (Interactive Motors Only)

Data type: ULONG
Access: Read-Write
Legal value range: [0, 4294967295]

This property specifies the rotational distance in degrees that you want to turn the motor.

Set the UPDATE_TACHO_LIMIT flag to commit changes to TACH_LIMIT. The NXT firmware treats the
new TACH_LIMIT value as a relative distance from the motor position at the moment that the
UPDATE_TACHO_LIMIT flag is processed. Remember that the sign of the SPEED property specifies the
direction of rotation.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 56

Version: 2.0

TURN_RATIO (Interactive Motors Only)

Data type: SBYTE
Access: Read-Write
Legal value range: [-100, 100]

This property specifies the proportional turning ratio for synchronized turning using two motors.

You must set some other properties appropriately on at least two motor ports for TURN_RATIO to have
the desired effect. Use the following guidelines when setting this property.

 The MODE bitfield must include MOTORON and REGULATED bits. The BRAKE bit is optional.
 REG_MODE must be set to REG_SYNCH.
 RUN_STATE must be set to a non-IDLE value.
 SPEED must be set to a non-zero value.

After you set these property values, the NXT firmware uses the TURN_RATIO value to adjust relative
power settings for the left and right motors automatically.

“Left” and “right” refer to the physical arrangement of the output plugs on an NXT brick (when facing the
display screen). There are only three valid combinations of left and right motors for use with
TURN_RATIO:

Left Right
Output Port A Output Port B
Output Port B Output Port C
Output Port A Output Port C

Note that this definition of “left” and “right” is independent of the LEGO model in use.

Negative TURN_RATIO values shift power towards the left motor, whereas positive TURN_RATIO values
shift power towards the right motor. In both cases, the actual power applied is proportional to the SPEED
set-point, such that an absolute value of 50% for TURN_RATIO normally results in one motor stopping,
and an absolute value of 100% for TURN_RATIO normally results in the two motors turning in opposite
directions at equal power.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 57

Version: 2.0

System Call Methods

The NXT firmware 1.28 provides 47 special-purpose system call (syscall) methods. The firmware
exposes these methods, or functions, with the OP_SYSCALL instruction. To call one of these functions,
the compiler must construct an OP_SYSCALL instruction with a valid SysCallID argument and a cluster
containing the appropriate parameters. The following table lists valid SysCallID values:

Value SysCallID
0x00 NXTFileOpenRead
0x01 NXTFileOpenWrite
0x02 NXTFileOpenAppend
0x03 NXTFileRead
0x04 NXTFileWrite
0x05 NXTFileClose
0x06 NXTFileResolveHandle
0x07 NXTFileRename
0x08 NXTFileDelete
0x09 NXTSoundPlayFile
0x0A NXTSoundPlayTone
0x0B NXTSoundGetState
0x0C NXTSoundSetState
0x0D NXTDrawText
0x0E NXTDrawPoint
0x0F NXTDrawLine
0x10 NXTDrawCircle
0x11 NXTDrawRect
0x12 NXTDrawPicture
0x13 NXTSetScreenMode
0x14 NXTReadButton
0x15 NXTCommLSWrite
0x16 NXTCommLSRead
0x17 NXTCommLSCheckStatus
0x18 NXTRandomNumber
0x19 NXTGetStartTick
0x1A NXTMessageWrite
0x1B NXTMessageRead
0x1C NXTCommBTCheckStatus
0x1D NXTCommBTWrite
0x1F NXTKeepAlive
0x20 NXTIOMapRead
0x21 NXTIOMapWrite
0x22 NXTColorSensorRead
0x23 NXTBTPower
0x24 NXTBTConnection
0x25 NXTCommHSWrite
0x26 NXTCommHSRead
0x27 NXTCommHSCheckStatus
0x28 NXTReadmeSemData
0x29 NXTWriteSemData
0x2A NXTComputeCalibValue
0x2B NXTUpdateCalibCacheData
0x2C NXTDatalogWrite
0x2D NXTDatalogGetTimes
0x2E NXTSetSleepTimeout
0x2F NXTListFiles

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 58

Version: 2.0

Note: The NXT firmware 1.28 does not use SyscallID values 0x1E, 0x25, 0x26,
0x27.

Note: The SyscallID values 0x28, 0x29, 0x2A, 0x2B, 0x2C, and 0x2D are intended
for internal use.

These values are grouped into the following classes:

Class Description
File Access Methods Manipulate files in the NXT brick’s flash memory file system.
NXT Display Methods Draw to the display on the NXT brick.
NXT Button Method Read the built-in buttons on the NXT brick.
Sound Playback Methods Play back recorded or synthesized sound.
Digital I/O Communications Methods Communicate with digital I/O port devices.
Bluetooth Communications Methods Communicate with connected Bluetooth peers.
Low-Level System Methods Access low-level system information.

All syscall methods require a cluster of parameters in the dataspace. These parameters can be inputs,
outputs, or both. The format, or data type, of the parameter cluster is specific to a particular method.

All syscall method parameter clusters include at least one scalar, which is the return value. Return values
are listed separately in this document, but must always be the first element of a syscall parameter cluster.
Most syscall methods provide status codes as their return values. In general, status code values indicate
one of the following three results:

 A status code of zero indicates a status of “OK”; no special action is required.
 A negative status code indicates an error.
 A positive status code indicates a warning.

The following sections provide information about each of these classes and the associated methods.

File Access Methods

Use the file access methods to create, modify, rename, or delete files stored on the NXT brick.

The NXT firmware organizes all files in a simple flat file system stored in the NXT bricks flash memory.
Files are listed and referred to by name, and files can have any size up to the amount of available flash.
The file system is flat because the file system does not support organizing files into hierarchical folders.
NXT firmware 1.28 allows you to create up to 127 files (assuming flash space is available).

NXT filenames include up to 15 characters for the main name, a dot, and 3 characters for the extension
(which specify the file type). This convention is referred to as “15.3 filenames”. A file extension serves as
a cue to the NXT firmware as to how and where files are listed and treated.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 59

Version: 2.0

The NXT firmware 1.28 and the LEGO MINDSTORMS NXT Software 2.0 use the following main file
extensions:

 .RXE: Executable files compiled from NXT-G, LabVIEW, or another compatible programming
environment.

 .RPG: 5-step programs created using the “NXT Program” UI on the NXT brick.
 .RTM: Built-in “Try Me” programs.
 .RIC: Image files for use with the NXTDrawPicture syscall method in .RXE programs.
 .RSO: Sound files.
 .SYS: Internal NXT firmware files.
 .CAL: Sensor calibration file.
 .TXT: ASCII text file using carriage return/line feed (CR/LF, Windows) end-of-line convention.
 .LOG: Also an ASCII text file, created by the NXT data logging functionality.

Programs can create, modify, rename, or delete any file in the system. Typical NXT programs use simple
text files with the .TXT extension. You then can upload these files easily to a PC, which then can read the
files. You can use any extension or file encoding you choose, but make sure not to interfere with the
various files that the NXT firmware and/or other programs use.

The default NXT firmware configuration includes several built-in files. You can delete any of these files to
free up space, but you lose any associated functionality until you restore these files.

The following sections list these individual methods along with some concepts with which you need to be
familiar.

File Handles

You must open a handle to a file before you can use read or write methods on the file. The
NXTFileOpenRead, NXTFileOpenWrite, and NXTFileOpenAppend methods return a unique handle
value. The NXT firmware also automatically registers open handles in an internal table such that the
NXTResolveHandle method can look up any open handle by filename.

You must close each file handle with the NXTFileClose method before using the file to which it refers
for any other purpose. When a program ends, the NXT firmware automatically closes any handles left
open by the program.

The NXT firmware restricts the maximum number of concurrently open file handles to 16. Note that
running programs uses up one file handle, and any current sound playback or other background process
can take up additional file handles. For these reasons, a program can generally open 10–12 handles.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 60

Version: 2.0

File Access Status Codes

File access methods return a different set of status codes from most other methods. File access status
codes are unsigned 16-bit integers rather than signed 8-bit integers. In most cases, you only need to
check if file access methods return status codes other than 0, which indicates a successful operation.
However, the following table describes the valid file access status codes.

0x0000 SUCCESS Operation succeeded.
0x8100 NO_HANDLES The firmware is not able to allocate any more file handles for this

operation.
0x8300 NO_FILES The firmware is not able to create any more files.
0x8400 PARTIAL_WRITE Write request exceeded space available in file; partial write

performed.
0x8500 EOF File operation reached end of file.
0x8700 FILE_NOT_FOUND Specified file not found.
0x8800 FILE_CLOSED Specified file or handle is already closed.
0x8900 NO_LINEAR_SPACE The firmware is not able to allocate requested linear file system

space for specified file.
0x8A00 GENERIC_ERROR An unspecified error condition occurred.
0x8B00 FILE_BUSY Cannot acquire file handle for specified file because some other

operation has opened the file.
0x8C00 NO_WRITE_BUFFERS Cannot open file for write operation because all write buffers are

already in use. Only four files can be open for write
simultaneously.

0x8D00 ILLEGAL_APPEND Cannot open file for append.
0x8E00 FILE_FULL Allocated space for specified file is full (no more write operations

allowed).
0x8F00 FILE_EXISTS Failure to create or rename file due to name collision.
0x9200 ILLEGAL_FILE_NAME Illegal file name provided. Ensure file name consists of 15.3 (or

fewer) printable characters.
0x9300 ILLEGAL_HANDLE Allocated space for specified file is full.

File Access Performance Issues

Writing to flash memory is very slow compared to RAM access on the NXT brick. Writing to flash memory
also monopolizes the CPU such that no other firmware operations can happen while flash writing is in
progress. The firmware buffers file write operations in RAM whenever possible, but the firmware is
subject to pauses of several milliseconds while these buffers are committed to flash memory. If you
experience significant delays during program operations, consider minimizing the amount of flash writing
you perform.

Most file access method calls are subject to delays averaging 6 ms or less, with NXTFileOpenWrite
subject to the most delay per call. The following sections describe the methods and include specific
notes about potential flash writing performance issues where applicable.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 61

Version: 2.0

NXTFileClose

Return Value:
Status Code UWORD

Parameters:
File Handle UBYTE input Unique handle to identify open file.

This syscall method closes the handle specified by File Handle.

If the return value is 0, the method successfully closed the file handle and removed the file from the list of
open files that NXTResolveHandle uses.

If the return value is non-zero, the close operation failed. Either the specified file handle was invalid or no
file was currently open using that file handle.

All files opened by an NXT program are automatically closed when the program finishes or is aborted.

Note: When NXT firmware 1.26 or later automatically closes a file, the firmware removes all unused
space in that file to maximize free space on the device.

Note that a successful NXTFileClose operation commits any pending file write buffers to flash memory,
so this operation is subject to the performance issues described in the File Access Performance Issues
section of this document.

NXTFileDelete

Return Value:
Status Code UWORD

Parameters:
Filename string input The name of the file, with a maximum of 19

characters (15.3 filename).

This syscall method deletes the file specified by Filename.

If the return value is 0, the delete operation succeeded. If the return value is non-zero, the delete
operation failed. Either the specified file does not exist or an open handle is associated with the file.

Be sure to close any open handles associated with a file before deleting it.

Note that file deletion involves writing internal file system data to flash memory, so this syscall method is
subject to the performance issues described in the File Access Performance Issues section of this
document.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 62

Version: 2.0

NXTFileOpenAppend

Return Value:
Status Code UWORD

Parameters:
File Handle UBYTE output Unique handle to identify open file.
Filename string input The name of the file, with a maximum of 19

characters (15.3 filename).
Length ULONG output Number of bytes remaining in file.

This syscall method attempts to open the file specified by Filename for append (write) operations. This
operation is useful only if a file already exists and has been closed before all of its allocated space has
been filled.

Note: When NXT firmware 1.26 or later automatically closes a file, the firmware removes all unused
space in that file to maximize free space on the device.

If the return value is 0, the file open operation succeeded. The File Handle output contains a unique
handle for use with NXTFileWrite and NXTFileClose and the Length output contains the number of
unused bytes remaining in the file. The internal file cursor is set automatically to the end of existing data
such that future calls to NXTFileWrite do not overwrite any data. Furthermore, this file is registered for
use with NXTFileResolveHandle.

If the return value is non-zero, an error occurred attempting to open the file. In this situation, you can
ignore File Handle and Length because this file is not registered for use with
NXTFileResolveHandle.

Only four files may be concurrently opened for write operations. This limit includes files opened with
NXTFileOpenAppend.

NXTFileOpenRead

Return Value:
Status Code UWORD

Parameters:
File Handle UBYTE output Unique handle to identify open file.
Filename string input The name of the file, with a maximum of 19

characters (15.3 filename).
Length ULONG output The length of file, in bytes.

This syscall method attempts to open the file specified by Filename for read operations.

If the return value is 0, the file open operation succeeded. File Handle is assigned a unique handle for
use with NXTFileRead and NXTFileClose, and Length is assigned the current length of the file.
Furthermore, this file is registered for use with NXTFileResolveHandle.

If the return value is non-zero, an error occurred attempting to open the file. In this situation, you can
ignore File Handle and Length because this file is not registered for use with
NXTFileResolveHandle.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 63

Version: 2.0

NXTFileOpenWrite

Return Value:
Status Code UWORD

Parameters:
File Handle UBYTE output Unique handle to identify open file.
Filename string input The name of the file, with a maximum of 19

characters (15.3 filename).
Length ULONG input-output Length of file, in bytes.

This syscall method attempts to create a file with the name specified by Filename and size in bytes
specified by Length, then keep the file open for write operations. You must specify the total file size
using the Length parameter when you create the file. If you do not use all of the memory allocated for a
particular file before closing the file handle, you can open the file for further write operations using the
NXTFileOpenAppend syscall method.

Note: When NXT firmware 1.26 or later automatically closes a file, the firmware removes all unused
space in that file to maximize free space on the device.

If the return value is 0, the file creation operation was successful. The File Handle output is assigned
a unique handle for use with NXTFileWrite and NXTFileClose and the Length output is assigned
the current length of the file. Furthermore, this file is registered for use with NXTFileResolveHandle.

If the return value is non-zero, an error occurred attempting to open the file. In this situation, you can
ignore File Handle and Length because this file is not registered for use with
NXTFileResolveHandle.

Only four files can be concurrently opened for write operations. This limit includes files opened with
NXTFileOpenAppend.

Note that file creation involves writing data to flash, so this syscall method is subject to performance
issues described. NXTFileOpenWrite is potentially subject to the most flash writing delay of any
method. Creating a very large file can result in a delay of up to 30ms.

NXTFileRead

Return Value:
Status Code UWORD

Parameters:
File Handle UBYTE input-output Unique handle to identify open file.
Buffer string output File data in string format.
Length ULONG input-output Length of file in bytes.

This syscall method attempts to read Length bytes of data from the file opened with the handle specified
by File Handle.

If the return value is 0, the file read operation succeeded. Buffer contains Length bytes of file data in
string format. If the file contains text data, use the string like a normal text string, e.g., to display to the
screen. If the file contains flattened binary data, use the OP_UNFLATTEN instruction to unflatten it.

If the return value is non-zero, an error occurred attempting to read bytes from the file. Note that Buffer
might still contain valid data if the method encountered the end of the file before reading Length bytes.
In this case, read the Length output to find out how many bytes were actually read.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 64

Version: 2.0

Successive calls to NXTFileRead with the same file handle will read new data each time, that is, each
read operation advances the internal file read cursor.

NXTFileRename

Return Value:
Status Code UWORD

Parameters:
Old Filename string input The current name of the file, with a

maximum of 19 characters (15.3 filename).
New Filename string input The new name of the file, with a maximum of

19 characters (15.3 filename).

This syscall method renames file specified by Old Filename to New Filename.

If the return value is 0, the rename operation succeeded. If the return value is non-zero, the rename
operation failed. Either the specified file does not exist or an open handle is associated with the file.

Be careful to close any open handles associated with a file before renaming it.

Note that file renaming involves writing internal file system data to flash memory, so this syscall method is
subject to the performance issues described in the File Access Performance Issues section of this
document.

NXTFileResolveHandle

Return Value:
Status Code UWORD

Parameters:
File Handle UBYTE output Unique handle to identify open file
Write Handle? UBYTE output Returns TRUE (1) if the handle is open for

write operations. Otherwise, returns FALSE
(0).

Filename string input The name of the file, with a maximum of 19
characters (15.3 filename).

The NXT firmware maintains a list of open file handles. This syscall method searches the list of open file
handles by Filename. To succeed, Filename must contain the exact filename of an already opened
file.

If the return value is 0, the file is already open. The File Handle output is assigned a unique handle for
use with NXTFileRead, NXTFileWrite, and NXTFileClose. If the Boolean output Write Handle?
is set to TRUE, the file is open for write operations. Otherwise the file is open for read operations.

If the return value is non-zero, the file is not yet open. You can ignore File Handle and Write
Handle?. If you intend to use the file, call the appropriate open method for the file.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 65

Version: 2.0

NXTFileWrite

Return Value:
Status Code UWORD

Parameters:
File Handle UBYTE input-output Unique handle to identify open file.
Buffer string input-output File data in string format.
Length ULONG input-output Number of bytes to write (in); number of bytes

written (out).

This syscall method attempts to write Length bytes of data to the file opened with the handle specified by
File Handle. If you use all of the memory allocated for the specified file, the NXTFileWrite method
writes partial contents of the Buffer data to the file. The method sets Length to the number of bytes
actually written, but does not modify the Buffer. If you intend to write more data, you need to close this
file and use NXTOpenWrite to create a new file.

If the return value is 0, the file write operation succeeded. If the return value is non-zero, an error
occurred attempting to write bytes from the file.

If you use all of the memory allocated for the specified file, the NXTFileWrite method writes partial
contents of the Buffer data to the file. The method sets Length to the number of bytes actually written,
but does not modify the Buffer. If you intend to write more data, you need to close this file and use
NXTOpenWrite to create a new file.

Successive calls to NXTFileWrite with the same file handle write new data each time. Each write
operation advances the internal file write cursor.

Note that NXTFileWrite involves writing to flash memory, so this syscall method is subject to the
performance issues described above. Because NXTFileWrite often is called many times in quick
succession (to stream data to a file), the NXT firmware provides some buffering to minimize the
performance cost. This buffering means that a 4–6 ms delay might occur for every 256 bytes written.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 66

Version: 2.0

NXT Display Methods

Use the NXT display methods to draw text, points, shapes, or graphic files to the built-in display on the
NXT brick.

NXTDrawCircle

Return Value:
Status Code SBYTE Unused

Parameters:
Center cluster

 SWORD (X)
 SWORD (Y)

input-output XY coordinates, relative to the lower-left
corner of the screen, that specify the center
of the circle.

Radius UBYTE input Radius, in pixels.
Options ULONG input Bitfield of draw options.

This syscall method draws a circle outline specified by Center coordinates and Radius (in pixels).

All draw coordinates are relative to the lower left corner of the screen on the NXT brick.

Set the least significant bit of Options to 1 to clear the entire screen before drawing. If you do not set
this bit, the method overlays the circle on top of any pixels already drawn by the program. The circle
outline is transparent; the method never modifies pixels inside the circle.

The first drawing syscall method to execute in a program automatically clears the screen regardless of the
value of Options.

The return value is always 0.

NXTDrawLine

Return Value:
Status Code SBYTE Unused

Parameters:
StartLocation cluster

 SWORD (X)
 SWORD (Y)

input-output XY coordinates, relative to the lower-left
corner of the screen.

EndLocation cluster
 SWORD (X)
 SWORD (Y)

input-output XY coordinates, relative to the lower-left corner
of the screen.

Options ULONG Input Bitfield of draw options.

This syscall method draws a black line one pixel wide from StartLocation to EndLocation.

All draw coordinates are relative to the lower-left corner of the screen on the NXT brick.

Set the least significant bit of Options to 1 to clear the entire screen before drawing. If you do not set
this bit, the method overlays the line on top of any pixels already drawn by the program.

The first drawing syscall method to execute in a program automatically clears the screen regardless of the
value of Options.

The return value is always 0.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 67

Version: 2.0

NXTDrawPicture

Return Value:
Status Code UBYTE

Parameters:
Location cluster

 SWORD (X)
 SWORD (Y)

input-output XY coordinates, relative to the lower-left
corner of the screen.

Filename string input Maximum of 19 characters (15.3 filename)
Variables SLONG array input Optional parameters as defined by the .RIC

file.
Options ULONG input Bitfield of draw options.

This syscall method renders the .RIC-format graphic file specified by Filename. Location specifies
coordinates of the lower left corner of the rendered image.

All draw coordinates are relative to the lower-left corner of the screen on the NXT brick.

The Variables argument specifies an array of arbitrary numeric parameters that certain .RIC files
might use. Most files ignore these variables.

Set the least significant bit of Options to 1 to clear the entire screen before drawing. If you do not set
this bit, the method overlays the graphic on top of any pixels already drawn by the program.

The first drawing syscall method to execute in a program automatically clears the screen regardless of the
value of Options.

If return value is non-zero, an error occurred while attempting to draw the file. Either the specified file
does not exist, or is not a valid .RIC format file.

NXTDrawPoint

Return Value:
Status Code SBYTE Unused

Parameters:
Location cluster

 SWORD (X)
 SWORD (Y)

input-output XY coordinates, relative to the lower-left
corner of the screen.

Options ULONG input Bitfield of draw options

This syscall method draws a single black pixel at the coordinates that Location specifies.

All draw coordinates are relative to the lower left corner of the screen on the NXT brick.

Set the least significant bit of Options to 1 to clear the entire screen before drawing. If you do not set
this bit, the method overlays the point on top of any pixels already drawn by the program.

The first drawing syscall method to execute in a program automatically clears the screen regardless of the
value of Options.

The return value is always 0.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 68

Version: 2.0

NXTDrawRect

Return Value:
Status Code SBYTE Unused

Parameters:
Location cluster

 SWORD (X)
 SWORD (Y)

input-
output

XY coordinates, relative to the lower-left
corner of the screen.

Size cluster
SWORD
(Width)
SWORD
(Height)

input-
output

Dimensions of rectangle, in pixels.

Options ULONG input Bitfield of draw options.

This syscall method draws a rectangle outline with one corner at the coordinates specified by Location.
The Size cluster specifies relative coordinates of the corner opposite from Location.

Set the least significant bit of Options to 1 to clear the entire screen before drawing. If you do not set
this bit, the method overlays the rectangle on top of any pixels already drawn by the program. The
rectangle outline is transparent; the method never modifies pixels inside the rectangle.

The first drawing syscall method to execute in a program automatically clears the screen regardless of the
value of Options.

The return value is always 0.

NXTDrawText

Return Value:
Status Code SBYTE Unused

Parameters:
Location cluster

 SWORD (X)
 SWORD (Y)

input-output XY coordinates, relative to the lower-left
corner of the screen.

Text string input Text string to draw.
Options ULONG input Bitfield of draw options.

This syscall method renders the string Text at the coordinates specified by Location. This method
only renders printable characters; this method ignores non-ASCII or non-printable characters. This
method does not wrap text at the screen edges.

All draw coordinates are relative to the lower left corner of the screen on the NXT brick. The
NXTDrawText method coerces y-coordinates to multiples of 8 (rounding down) such that text always
appears on one of eight distinct lines on the display.

Set the least significant bit of Options to 1 to clear the entire screen before drawing. If you do not set
this bit, the method overlays the text on top of any pixels already drawn by the program.

The first drawing syscall method to execute in a program automatically clears the screen regardless of the
value of Options.

The return value is always 0.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 69

Version: 2.0

NXTSetScreenMode

Return Value:
Status Code SBYTE

Parameters:
ScreenMode ULONG input New screen mode.

This syscall method sets a new mode for the NXT display screen. The only valid mode for NXT firmware
1.28 is RESTORE_NXT_SCREEN, or value 0. Use this screen mode to restore the default status screen
after using any of the NXTDraw syscall methods.

The return value is always 0

NXT Button Method

Use the NXT button method to read the status of the built-in buttons on the NXT brick. Note that you can
only read the top three buttons, as the bottom button always aborts the program.

NXTReadButton

Return Value:
Status Code SBYTE

Parameters:
Index UBYTE input Button index: RIGHT, LEFT, or ENTER.

Refer to the table below this one for the
valid Index parameter values.

Pressed UBYTE output TRUE (1) if specified button is currently
depressed

Count UBYTE output Number of times specified button has been
pressed and released since last reset.

Reset? UBYTE input Set to TRUE (1) to reset Count after reading
state.

This syscall method reads the state of the built-in NXT button specified by Index. The following table
displays the legal values of Index.

0x01 RIGHT Right arrow button
0x02 LEFT Left arrow button
0x03 ENTER Center square button

Set Reset? to TRUE to reset Count after reading the state.

If the status code is 0, Pressed returns TRUE when the button is depressed, and Count returns the
number of times button has been depressed and released since last reset. If the status code is non-zero,
you specified an illegal value for Index.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 70

Version: 2.0

Sound Playback Methods

Use the sound playback methods to control the sound module on the NXT brick.

NXTSoundGetState

Return Value:
State UBYTE

Parameters:
Flags UBYTE output Bitfield of sound module flags.

This syscall method reads the internal state and flags of the sound module of the NXT brick. If Flags is
non-zero, the sound module has playback operations pending or in progress. The following table
describes the values that Flags can return.

0x00 SOUND_FLAGS_IDLE No flags set. The sound module is
idle.

0x01 SOUND_FLAGS_UPDATE A request for playback is pending.
0x02 SOUND_FLAGS_RUNNING Playback in progress.

The return value can be any of the following values:

0x00 SOUND_IDLE The sound module is idle, but there might
be a pending request to playback sound.

0x02 SOUND_FILE The Sound module is playing a .RSO file.
0x03 SOUND_TONE The sound module is playing a tone.
0x04 SOUND_STOP A request to stop playback is in progress.

NXTSoundPlayFile

Return Value:
Status Code SBYTE Unused

Parameters:
Filename string input The name of the file, with a maximum of 19

characters (15.3 filename).
Loop? UBYTE input Set to TRUE (1) to enable automatic looping

of sound file.
Volume UBYTE input Volume of playback, between 0 and 4.

This syscall method starts playback of the sound file specified by Filename. The file must be a valid
.RSO-format sound file.

Set Loop? to TRUE to loop playback automatically and indefinitely without further syscall methods.

The following table displays the legal values for Volume and the associated behavior.

0 Sound playback
disabled.

1 25% of full volume.
2 50% of full volume.
3 75% of full volume.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 71

Version: 2.0

4 100% of full volume.

NXTSoundPlayTone

Return Value:
Status Code SBYTE Unused

Parameters:
Frequency UWORD input Frequency of tone, in Hertz.
Duration UWORD input Duration of tone, in milliseconds.
Loop? UBYTE input Set to TRUE (1) to enable automatic looping

of tone.
Volume UBYTE input Volume of playback, between 0 and 4.

This syscall method starts playback of a tone specified by Frequency in Hz and Duration in ms.

Set Loop? to TRUE to loop playback automatically and indefinitely without further syscall methods.

The following table displays the legal values for Volume and the associated behavior.

0 Sound playback
disabled.

1 25% of full volume.
2 50% of full volume.
3 75% of full volume.
4 100% of full volume.

NXTSoundSetState

Return Value:
State UBYTE

Parameters:
State UBYTE input New state for the sound module.
Flags UBYTE input Bitfield of sound module flags.

This syscall method writes new State and Flags values to the sound module of the NXT brick. Use this
syscall method with caution because it directly influences the internals of the sound module on the NXT
brick. Use this method only for stopping current playback by writing a new State value of SOUND_STOP.

The following value is the only legal value you can write to State:

0x04 SOUND_STOP Request to stop
playback.

The following value is the only legal value you can write to Flags:

0x00 SOUND_FLAGS_IDLE No flags set.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 72

Version: 2.0

Digital I/O Communication Methods

Use the digital I/O communication methods to access devices that use the I2C protocol on the NXT
brick’s four input ports.

You must set the TYPE property to LOWSPEED or LOWSPEED_9V on a given port before using an I2C
device on that port. Use LOWSPEED_9V if your device requires 9V power from the NXT brick. Remember
that you also need to set the INVALID_DATA property to TRUE after setting a new TYPE, then wait (e.g.
with a while loop) for the NXT firmware to set INVALID_DATA back to FALSE. This process ensures that
the firmware has time to properly initialize the port, including the 9V power lines, if applicable. Some
digital devices might need additional time to initialize after power up.

When communicating with I2C devices, the NXT firmware uses a master/slave setup in which the NXT
brick is always the master device. This setup means that the NXT firmware is responsible for controlling
the write and read operations. Furthermore, the NXT firmware maintains write and read buffers for each
port, and the three syscall methods provided enable you to access these buffers.

A call to NXTCommLSWrite constitutes the start of an asynchronous transaction between the NXT brick
and a digital device, such that the program continues to run while the firmware manages sending bytes
from the write buffer and reading the response bytes from the device. Because the NXT is the master
device, you must also specify the number of bytes to expect from the device in response to each write
operation. You can exchange up to 16 bytes in each direction per transaction.

After you start a write transaction with NXTCommLSWrite, use NXTCommLSCheckStatus in a while loop
to check the status of the port. If NXTCommLSCheckStatus returns a status code of 0 and a count of
bytes available in the read buffer, the system is ready for you to use NXTCommLSRead to copy the data
from the read buffer into another buffer.

Note that any of these calls might return various status codes at any time. A status code of 0 means the
port is idle and the last transaction (if any) did not result in any errors. Negative status codes and the
positive status code 32 indicate errors. There are a few possible errors per call.

The following sections provide more information about each low speed communication method.

NXTCommLSCheckStatus

Return Value:
Status Code SBYTE

Parameters:
Port UBYTE input Port. The four valid ports are 0, 1, 2, and 3.
BytesReady UBYTE input Number of bytes ready for reading, if any.

This syscall method checks the status of the I2C communication on the specified port. If the last
operation on this port was a successful NXTCommLSWrite operation that requested response data from a
device, BytesReady indicates the number of bytes in the internal read buffer. You can access this
information using NXTCommLSRead.

If the return value is 0, the port is idle and the last operation (if any) did not cause any errors.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 73

Version: 2.0

The following table describes the status codes that indicate an error.

32 0x20 STAT_COMM_PENDING The specified Port is busy performing a
transaction.

-35 0xDD ERR_COMM_BUS_ERR The last transaction failed, possibly due to a
device failure.

-33 0xDF ERR_COMM_CHAN_INVALID The specified Port is invalid. Port must be
between 0 and 3.

-32 0xE0 ERR_COMM_CHAN_NOT_READY The specified Port is not properly configured.

ERR_COMM_BUS_ERR typically means that either no digital device is connected to the specified port or the
connected device is configured incorrectly. To clear the error condition, you can attempt to write new
data to the device.

If this method returns ERR_COMM_CHAN_NOT_READY, ensure TYPE is set properly and that
INVALID_DATA is FALSE for this port before attempting further transactions. Refer to the Input Port
Configuration Properties section of this document for more information about TYPE and
INVALID_DATA.

If this method returns STAT_COMM_PENDING, an operation is in progress. Do not attempt to interrupt
operations in progress. Avoid calls to NXTCommLSRead or NXTCommLSWrite until
NXTCommLSCheckStatus returns 0 or a negative error code.

NXTCommLSRead

Return Value:
Status Code SBYTE

Parameters:
Port UBYTE Input Port. The four valid ports are 0, 1, 2, and 3.
Buffer UBYTE array Out Bytes read from device, if any.
BufferLength UBYTE Input Upper bound on number of bytes to read into

Buffer. The actual number returned is limited to
bytes available in the internal read buffer.

This syscall method attempts to copy BufferLength bytes from the internal read buffer to another
buffer.

If the return value is 0, the read operation succeeded and Buffer contains all bytes available in the
internal buffer. Successive NXTCommLSRead method calls read new data each time.

The following table describes the status codes that indicate an error.

32 0x20 STAT_COMM_PENDING The specified Port is busy performing a
transaction.

-35 0xDD ERR_COMM_BUS_ERR The last transaction failed, possibly due to a
device failure.

-33 0xDF ERR_COMM_CHAN_INVALID The specified Port is invalid. Port must be
between 0 and 3.

-32 0xE0 ERR_COMM_CHAN_NOT_READY The specified Port is not properly configured.

If this method returns any negative status code, Buffer is an empty array.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 74

Version: 2.0

NXTCommLSWrite

Return Value:
Status Code SBYTE

Parameters:
Port UBYTE input Port. The four valid ports are 0, 1, 2, and 3.
Buffer UBYTE array input Up to 16 bytes for writing to device.
ReturnLength UBYTE input Number of bytes expected from device in

response to writing data in Buffer; maximum
16.

This syscall method copies data from the buffer input to an internal write buffer and instructs the NXT
firmware to perform a transaction by sending the write buffer to the device and reading ReturnLength
bytes back into the internal read buffer.

If the return value is 0, the method successfully started a communication transaction. Use
NXTCommLSCheckStatus to monitor the status of the transaction.

The following table describes the status codes that indicate an error.

-33 0xDF ERR_COMM_CHAN_INVALID The specified Port is invalid. Port must be

between 0 and 3.
-32 0xE0 ERR_COMM_CHAN_NOT_READY The specified Port is busy or not properly

configured.
-19 0xED ERR_INVALID_SIZE Either Buffer or ReturnLength exceeded

the 16-byte limit.

Bluetooth Communication Methods

Use the Bluetooth communication methods to send packets of information to other devices connected to
the NXT brick via Bluetooth. You also use these methods to access the messaging queue system of the
NXT firmware.

The NXT firmware uses a master/slave serial port system for Bluetooth communication. You must
designate one Bluetooth device as the master device before you run a program using Bluetooth. If the
master device is the NXT brick, you can configure up to three slave devices using serial ports 1, 2, and 3
on this brick. If the slave device is an NXT brick, port 0 on this brick is reserved for the master device.

Programs running on the master NXT brick can send packets of data to any connected slave devices
using the NXTCommBTWrite method. However, slave devices cannot send packets to master devices.
The firmware of slave NXT devices automatically handles responses sent by programs on master
devices.

Refer to the protocol documentation for more information regarding Bluetooth packet structure.

This section also includes descriptions of the system call methods for accessing the NXT brick’s mailbox,
or message queues. By using the direct command protocol, a master device can send messages to
slave NXT bricks in the form of text strings addressed to a particular mailbox. Each mailbox on the slave
NXT brick is a circular message queue holding up to five messages. Each message can be up to 58
bytes long.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 75

Version: 2.0

To send messages from a master NXT brick to a slave brick, use NXTCommBTWrite on the master brick
to send a MessageWrite protocol packet to the slave. Then, use NXTMessageRead on the slave brick to
read the message. The slave NXT brick must be running a program when an incoming message packet
is received. If no program is running, the slave NXT brick ignores the message, and the message is lost.

To exchange numeric data using the message system, use the OP_FLATTEN and OP_UNFLATTEN
instructions to convert data to and from text strings.

NXTCommBTCheckStatus

Return Value:
Status Code SBYTE

Parameters:
Connection UBYTE input Port. The four valid ports are 0, 1, 2, and 3.

This syscall method checks the status of the Bluetooth communication on the specified Port.

If the return value is 0, the port is idle and the last operation, if any did not cause any errors.

The following table describes the status codes that indicate an error.

32 0x20 STAT_COMM_PENDING The specified Port is busy performing a
transaction.

-35 0xDD ERR_COMM_BUS_ERR The last transaction failed, possibly due to a
device failure.

-33 0xDF ERR_COMM_CHAN_INVALID The specified Port is invalid. Port must be
between 0 and 3.

-32 0xE0 ERR_COMM_CHAN_NOT_READY The specified Port is not properly configured.

If this method returns ERR_COMM_CHAN_NOT_READY, ensure a Bluetooth connection is configured on the
specified port.

If this method returns STAT_COMM_PENDING, an operation is in progress. Do not attempt to interrupt
operations in progress. Avoid calls to NXTCommBTRead or NXTCommBTWrite until
NXTCommBTCheckStatus returns 0 or a negative error code.

NXTCommBTWrite

Return Value:
Status Code SBYTE

Parameters:
Connection UBYTE input Port. The four valid ports are 0, 1, 2, and 3.
Buffer UBYTE array input Up to 256 bytes for writing to specified port.

This syscall method copies data from the buffer input to an internal Bluetooth buffer and instructs the NXT
firmware to send the data to the device configured on the specified port.

If the return value is 0, the method successfully started a communication transaction. Use
NXTCommBTCheckStatus to monitor the status of the transaction.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 76

Version: 2.0

The following table describes the status codes that indicate an error.

-33 0xDF ERR_COMM_CHAN_INVALID The specified Connection is invalid.

Connection must be between 0 and 3.
-32 0xE0 ERR_COMM_CHAN_NOT_READY The specified port is busy or not properly

configured.
-19 0xED ERR_INVALID_SIZE The Buffer size exceeded the 256-byte limit.

If you are sending data to another NXT brick, the buffer should contain a complete packet conforming to
the NXT communication protocol. Refer to the protocol documentation for LEGO MINDSTORMS NXT for
more information regarding Bluetooth packet structure.

NXTMessageRead

Return Value:
Status Code SBYTE

Parameters:
QueueID UBYTE input Mailbox queue. The valid queues are

between 0 and 9.
Remove (T) UBYTE input If TRUE (1), remove message from specified

queue after reading data.
Message string output Message data.

This syscall method reads the oldest message available in the specified mailbox queue. You also can
specify that this method removes that message from the queue.

If the return value is 0, the specified message queue was not empty and the Message output contains the
oldest message from the queue.

The following table describes the status codes that indicate an error.

64 0x40 STAT_MSG_EMPTY_MAILBOX The specified QueueID is empty
-18 0xEE ERR_INVALID_QUEUE The specified QueueID is invalid. The valid

queues are between 0 and 9.

If you are calling NXTMessageRead on a master NXT brick with slave devices connected, this method
will also periodically check for outgoing messages on the slave devices by automatically exchanging
Bluetooth protocol packets with slaves.

NXTMessageWrite

Return Value:
Status Code SWORD

Parameters:
QueueID UBYTE input Mailbox queue. The valid queues are

between 0 and 9.
Message string input Message data.

This syscall method writes a new message to the specified mailbox queue. If there are already five
messages in the specified queue, this method deletes the oldest message.

If the return value is 0, the method succeeded in writing the message to the specified mailbox queue.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 77

Version: 2.0

The following table describes the status codes that indicate an error.

-18 0xEE ERR_INVALID_QUEUE The specified QueueID is invalid. The valid

queues are between 0 and 9.
-19 0xED ERR_INVALID_SIZE The Message is too large.

If you are calling NXTMessageWrite on a slave NXT brick, use mailbox queues 10 through 19 as
outboxes. When the master NXT brick reads messages, it checks these upper 10 mailboxes for outgoing
message on the slave.

NXTBTPower

Return Value:
Parameter Data Code I/O Direction Description
Power State Boolean input Signifies on or off

This dynamic syscall method turns the Bluetooth device power on or off.

NXTBTConnection

Return Value:
Parameter Data Code I/O Direction Description
Action U8 input [0-Initiate

connection, 1-Close
connection]

Partner Name String input Name of device
Connection U8 input Connection (port),

[0,3]

This dynamic syscall method initiates or closes a connection to another device.

Low-Level System Methods

Use the low-level system methods to access miscellaneous low-level features of the NXT firmware.

NXTGetStartTick

Return Value:
Program Start
Tick

ULONG

This syscall method returns the value of the system millisecond timer corresponding to the start of
execution of the current program. This method is useful for measuring time difference relative to the start
of program execution.

NXTIOMapRead

Return Value:
Status Code SBYTE

Parameters:
ModuleName string input The name of firmware module.
Offset UWORD input The offset from beginning of the module’s I/O

map.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 78

Version: 2.0

Count UWORD input The count of bytes to read.
Buffer UBYTE array output I/O map data.

This syscall method reads internal firmware module state information. This method is reserved for
internal use only.

NXTIOMapWrite

Return Value:
Status Code SBYTE

Parameters:
ModuleName string input The name of the firmware module.
Offset UWORD input The offset from beginning of the module’s I/O

map.
Buffer UBYTE array input I/O map data.

This syscall method writes internal firmware module state information. This method is reserved for
internal use only.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 79

Version: 2.0

NXTKeepAlive

Return Value:
Sleep Time Limit ULONG

This syscall method resets the NXT brick’s internal sleep timer and returns the current time limit, in
milliseconds, until the next automatic sleep. Use this method to keep the NXT brick from automatically
turning off. Use the NXT brick’s UI menu to configure the sleep time limit.

NXTRandomNumber

Return Value:
Random Number SWORD

This syscall method returns a signed 16-bit random number. The firmware chooses new random seeds
after every 20 calls to this method.

NXTSetSleepTimeout

Return Value:
Parameter Data Code I/O Direction Description
SleepTimeout U2 input Sleep timeout value

in milliseconds

This dynamic syscall method used by NXT data logging sets the brick sleep timeout during data logging
programs. This prevents the brick from going to sleep during data logging.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 80

Version: 2.0

Reserved Opcodes

Opcode values not listed in the Instruction Reference section of this document are not supported in the
NXT firmware version 1.28 and will result in fatal run-time errors if used. Also, the following opcode
values are reserved for internal use.

 0x0A
 0x0B
 0x0C
 0x0D
 0x0E
 0x0F
 0x10
 0x13
 0x14
 0x34

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 81

Version: 2.0

GLOSSARY

Block Diagram

NXT-G is a graphical programming language. Source code in NXT-G takes the form of block diagrams
consisting of code blocks and data wires.

Aggregate data type

An aggregate data type is an array or a cluster. See also Scalar data type.

Bytecode instruction

A bytecode instruction is a single operation that a program takes to modify data or access a feature of the
NXT firmware. NXT programs are comprised of bytecode instructions, which are interpreted by the virtual
machine. See also Virtual machine.

Refer to the Codepsace section of this document for information about the arrangement of bytecode
instructions in an NXT program. Refer to the Instruction Reference section of this document for
information about specific bytecode instructions.

Bytecode scheduling

Bytecode scheduling refers to the fact that .RXE files contain information that the virtual machine uses to
decide when bytecode instructions and clumps run. See also Bytecode instruction, Clump, Virtual
machine.

Clump

Clumps are batches of bytecode instructions which the virtual machine schedules to run. Clumps are
loosely analogous to tasks in the RCX firmware, but the number of clumps is dynamic, up to a limit of 255.

By definition, a program is “running” when at least one of its clumps is active. Furthermore, the virtual
machine can keep any number of clumps active in parallel. Clumps may be serialized (run in a
pre-defined order) or parallelized depending on the output of the compiler.

In LEGO MINDSTORMS NXT 2.0 programming software, parallel loops are an example where at least
two clumps may run in parallel. Subroutines, such as My Blocks in NXT-G, are also separate clumps of
code.

Refer to the Bytecode Scheduling section of this document for information about how the virtual
machine schedules clumps.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 82

Version: 2.0

Clump Record

A clump record is a bookkeeping data structure that determines a given clump’s state at run-time and its
scheduling relationships with other clumps. Clump records stored in .RXE files contain only scheduling
information. Run-time state information is maintained only while the program is loaded into RAM.

Refer to the Clump Records section of this document for more information about clump records.

Cluster

Clusters are dataspace structures similar to C-style structs. Clusters contain elements of various sub-
types and can include nested clusters and/or arrays.

Codespace

All instructions in a program are stored in the codespace section of the file. In memory, the codespace is
treated as an array of UWORD elements, or code words.

Refer to the Codespace section of this document for more information about the codespace.

Code word

A code word is a single 16-bit element of the codespace. Bytecode instructions are comprised of one or
more code words.

Compatible Data Types

Many instructions accept arguments of various data types. If a given pair of arguments share the exact
same data type or are easily convertible from one data type to the other, they are considered
“compatible”. For example, all scalar number data types are compatible with each other.

Refer to the Polymorphic Instructions and Data Type Compatibility for more information about
compatible data types.

Dataspace

The dataspace is a pool of RAM in which all user data items reside. Most bytecode instructions operate
on dataspace items via those items index (dataspace item ID) in the dataspace table of contents.

Refer to the Dataspace section of this document for more information about the dataspace.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 83

Version: 2.0

Dataspace item

A dataspace item is an individually-addressable entity residing in the program’s dataspace. These items
may have simple scalar (numeric) data types, consist of aggregates (arrays or clusters) of one or more
scalar sub-types, or have one of two special data types (VOID or MUTEX).

Dataspace item ID

Bytecode instruction arguments often take the form of dataspace item IDs. These arguments uniquely
identify an addressable record in the dataspace table of contents. Refer to the Argument Formats
section of this document for more information.

Dataspace table of contents

The dataspace table of contents (DSTOC) is a section of the executable file that describes the data types
of all items in a programs dataspace. Most bytecode instruction arguments take the form of indexes into
this table of contents. At run-time, this table also is used to calculate the actual location of data in RAM.

Refer to the Dataspace Table of Contents section of this document for more information about the
DSTOC.

Dope vector

A dope vector (DV) is a data structure which describes an array in RAM. Each array in the dynamic
dataspace has an associated dope vector.

Refer to the Dope Vector section of this document for more information about dope vectors.

Dynamic dataspace

The dynamic dataspace is the segment of RAM that contains array dataspace items. See also Static
dataspace, Aggregate data type.

Instruction

See Bytecode instruction.

Mutex record

The virtual machine uses mutex records to control parallel access to subroutine clumps. Mutex records
are stored in the static dataspace. See also Virtual machine, Clump record, Static dataspace.

LEGO® MINDSTORMS® NXT Executable File Specification
©2006-2009 The LEGO Group 84

Version: 2.0

NXT-G

The graphical programming language used by LEGO MINDSTORMS NXT Software is called NXT-G. It is
based on National Instruments LabVIEW.

Opcode

Each instruction is identified via a unique one-byte operation code, or opcode. Common examples
include OP_ADD (opcode 0x00) and OP_MOV (opcode 0x1B).

Scalar data type

A scalar data type is an integer. See also Aggregate data type.

Static dataspace

The static dataspace is the segment of RAM that contains dataspace items that are integers, mutexes, or
dope vector indexes. See also Dynamic dataspace, Mutex record, Dope vector.

Type code

Type codes are used in the dataspace table of contents to specify the data type of a particular element.
See also Dataspace table of contents.

Virtual machine

The virtual machine (VM) is the NXT firmware module responsible for running NXT programs. The VM
reads .RXE files, manages the dataspace, and manages bytecode instructions. See also Dataspace,
Bytecode instruction.

